期刊文献+

两种双侧强化管管外R245fa降膜蒸发的实验对比 被引量:2

Experimental Comparison of R245fa Falling Film Evaporation in Two Doubly-enhanced Tubes
下载PDF
导出
摘要 本文搭建了水平单管降膜蒸发实验台,以R245fa为工质实验研究两种三维翅双侧强化管降膜蒸发的换热特性。提出了新型Wilson-Gnielinski图解法,用于从实验的总传热系数中获得管内外表面传热系数。分析强化管表面结构对换热性能的影响,拟合出管内外换热关联式并提出强化换热方案。结果表明,与光滑管理论表面传热系数相比,Y型管的管内、管外换热强化倍率分别为2.12~2.94和2.27~5.54,T型管的管内、管外强化倍率分别为2.48~2.98和2.58~3.00。Y型管管外换热性能较好,T型管管内换热性能较好。Y型管的最佳喷淋密度(0.14~0.18 kg/(m·s))比T型管的最佳喷淋密度(约0.10 kg/(m·s))大;两种强化管表面传热系数均随热流密度的增加先上升后下降,但Y型管表面传热系数的变化速率较快;两种管子的换热效果均随蒸发温度的升高而增强。 The heat transfer performance of two types of doubly enhanced tubes was experimentally studied using R245 fa after the horizontal single-tube falling film evaporating test bench no built. The Wilson-Gnielinski graphic method was proposed to obtain the surface heat transfer coefficient of the tubes. The effect of the wall structure on the heat transfer performance was analyzed. The heat transfer correlations inside and outside the tubes were provided, and a fitting optimization scheme was proposed. The results showed that the enhancement rates of in-tube and out-tube heat transfer of the Y tube were 2.12-2.94 and 2.27-5.54, respectively. The internal and external enhancement rates of the T tube were 2.48-2.98 and 2.58-3.00, respectively. The out-tube heat transfer performance of the Y tube and the in-tube heat transfer performance of T tube were better. The heat transfer performance of the Y tube can be reinforced by optimizing its in-tube structure. The best spraying density of the Y tube [0.14-0.18 kg/(m·s)] was higher than that of the T tube [approximately 0.10 kg/(m·s)]. The surface heat transfer coefficient of the two tubes first increased and then decreased with the increase in the heat flux. However, the surface heat transfer coefficient of the Y tube changed more rapidly, which indicated that the thermosyphon boiling phenomenon caused by the smaller fin pitch of the Y tube accelerated the evaporation of refrigerant. The surface heat transfer coefficient of the two tubes increased with the increase in the evaporation temperature.
作者 赵加普 欧阳新萍 白桦 李伟 Zhao Jiapu;Ouyang Xingping;Bai Hua;Li Wei(Institute of Refrigeration and Cryogenics, University of Shanghai for Science and Techonology, Shanghai, 200093, China)
出处 《制冷学报》 CAS CSCD 北大核心 2019年第4期129-134,共6页 Journal of Refrigeration
关键词 强化传热 修正威尔逊图解法 降膜蒸发 强化管 制冷剂 coefficient of heat transfer improved Wilson graphic method falling film enhanced tube refrigeration
  • 相关文献

参考文献3

二级参考文献36

  • 1王世平.混合工质沸腾、冷凝传热研究的最新进展 (Ⅱ)冷凝传热[J].广州化工,1995,23(1):11-16. 被引量:3
  • 2杨一凡.氨制冷技术的应用现状及发展趋势[J].制冷学报,2007,28(4):12-19. 被引量:64
  • 3Jurgen Sub, Horst Kruse. Efficiency of the indicated process of CO2-compressor [J]. International Journal of Refrigeration, 1998, 21 (3) : 194-201.
  • 4Hubacher B, Groll E A. Measurement of performance of carbon dioxide compressors [R/OL]. http://www.arti-21 cr. org/research/completed/.
  • 5Mitsuhiro Fukuta, Radermacher R. Performance of a vane compressor for CO2 cycle [C]//4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 339-346.
  • 6Ali Kilicarslan, Norbet Muller. A comparative study of water as a refrigerant with some current refrigerants [J]. International Journal of Energy Research, 2005, 29 (11): 947-959.
  • 7Wight S E, Yoshinaka T, LeDrew B A, et al. The efficiency limits of water vapor compressors [R]. Report for Air-Conditioning and Refrigeration Technology Institute, 2000.
  • 8Brandon F, Lacher Jr, Gregory F, et al. The commercial feasibility of the use of water vapor as a refrigerant [J]. International Journal of Refrigeration, 2007, 30 (4): 699-708.
  • 9Granryd, E. Hydrocarbons as refrigerants-an overview [J]. International Journal of Refrigeration, 2001, 24(1): 15-24.
  • 10Sariibrahimoglu K, Kizil H, Aksit M, et al. Effect of R600a on tribological behavior of sintered steel under starved lubrication[J]. Tribology International, 2009, 43 (5-6) : 1054-1058.

共引文献132

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部