期刊文献+

复杂机电系统核熵判别分析的异常分类方法

A Classification Method for Abnormal Patterns of Complex Electromechanical System for Discriminant Analysis Nuclear Entropy
下载PDF
导出
摘要 为了解决复杂机电系统的海量数据的复杂性和动态性,以及对故障类型快速而有效地进行分类,提出一种基于信息熵的核熵判别分析-KEDA方法。首先,引入了信息熵的观点以便排除信息冗余后剩余的平均信息量能够保证异常模式的有效分类。其次,利用核熵成分分析对数据进行非线性映射和降维,为此确定基于熵的参数选取方法计算和KEDA算法步骤。从而在降维后的空间进行分类。最后,结合TE过程数据集对算法效果进行验证。通过仿真实验得知,提出的KEDA方法的识别率85%以上,表明KEDA方法比其他方法的有效性和优越性,具有一定的应用价值。 In order to solve the complexity and dynamic of massive data of complex electromechanical system in process industry, and to put up with fault data precisely and classify the fault types accurately and efficiently, this paper proposes a kernel entropy discriminant analysis method based on information entropy. Firstly, the concept of information entropy is introduced. Because of the redundancy of information, the redundancy degree is related to the uncertainty of information. The average information amount after excluding redundancy can eliminate the effective classification of abnormal patterns. Secondly, the kernel entropy component analysis is used to nonlinearly map and reduce the dimension of the data. The entropy-based parameter selection method is made to calculate steps and KEDA algorithm steps, so as to classify the space after dimension reduction. Finally, the effectiveness of the algorithm is verified by combining with the TE process dataset, and the effectiveness, superiority and rationality of the algorithm are verified by simulation experiments. The results show that KEDA method proposed in this paper has certain application value compared with other methods.
作者 亚森江·加入拉 高建民 高智勇 姜洪权 YA SEN JIANG·Jiarula;GAO Jian-min;GAO Zhi-yong;JIANG Hong-quan(School of Mechanical Engineering, Xinjiang University, Xinjiang Urumqi 830046, China;State Key Laboratory for Ma- nufacturing Systems Engineering, Xi'an Jiaotong University, Shaanxi Xi'an 710049, China)
出处 《机械设计与制造》 北大核心 2019年第8期8-11,共4页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(51175402,51375375) 西安交通大学机械制造系统工程国家重点实验室开放课题(sklms2015009)
关键词 复杂机电系统 核熵判别分析 异常模式分类 TE过程数据 Complex Electromechanical Systems Nuclear Entropy Discriminant Analysis Abnormal Pattern Classification TE Process Data
  • 相关文献

参考文献2

二级参考文献23

  • 1Burges C J C. Dimension Reduction: A Guided Tour[J]. Founda- tions and Trends in Machine Learning, 2010, 2(4): 275- 365.
  • 2Tsai F S. Comparative Study of Dimensionality Reduction Tech- niques for Data Visualization[J]. Journal of Artificial intelligence, 2010, 3(3): 119-134.
  • 3Maaten L J, Postma E O, Herik H J. Dimensionality Reduction: A Comparative Review[R]. Tilburg University, Technical Report: TiCC-TR 2009-005, 2009.
  • 4Xiao Lin, Sun Jun, Boyd S. A Duality View of Spectral Methods for Dimensionality Reduction[C] //Proc. of the 23rd International Conference on Machine Learning. New York, USA: ACM Press, 2006: 1041- 1048.
  • 5Kruger U, Zhang Junping, Xie Lei. Developments and Appli- cations of Nonlinear Principal Component Analysis——A Review[C] //Proc. of Lecture Notes in Computational Science and Engineering. [S. l.] : Springer, 2008: 1-43.
  • 6Jenssen R, Storaas O. Kernel Entropy Component Analysis Pre- images for Pattern Denoising[C] //Proc. of the 16th Scandinavian Conference on Image Analysis. Berlin, Germany: Springer-Verlag, 2009: 626-635.
  • 7Jenssen R. Kernel Entropy Component Analysis[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860.
  • 8Cortes C, Vapink V. Support Vector Network[J]. Machine Learning, 1995, 20(3): 273-297.
  • 9Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 1-43.
  • 10University of California Irvine. UCI Machine Learning Repo- sitory[EB/OL]. (2010-09-13). http://archive.ics.uci.edu/ml.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部