期刊文献+

基于近邻协同过滤算法的相似度计算方法研究 被引量:2

Research on Similarity Measure in Neighborhood Based Collaborative Filtering
下载PDF
导出
摘要 基于近邻的协同过滤算法是目前最为成功的个性化推荐算法之一,相似度计算方法是其核心内容.然而,该算法通常存在冷启动,数据稀疏性以及在相似度计算的时候只能使用共同评分之类的问题.为了有效改善上述算法推荐质量不高的问题,本文介绍了巴氏系数(Bhattacharyya Coefficient),结合修正余弦相似度、杰卡德相似度和皮尔森相关系数的优点,提出一种考虑了项目全局评分信息和局部评分信息的多重相似度融合的协同过滤算法(CFSI).在数据集MovieLens上的实验表明,CFSI在一定程度上有效缓解了数据稀疏性和冷启动问题,并且提高了推荐质量. Similarity measure is the core for neighborhood based Collaborative Filtering (CF) which is one of the most successful approaches for personalized recommendation algorithm.In order to improve the problems of neighborhood based CF in terms of user cold-start, Data sparsity and similarity calculation method which relies only on co-rated ratings, by utilizing Bhattacharyya coefficient and combining the advantages of adjusted-cosine similarity, Jaccard similarity and Pearson correlation, we proposed an collaborative filtering algorithm of similarity integration(CFSI) considering both the global ratings and the local ratings in this paper.We experimented with datasets in MovieLens.Experimental results showed that the new approach has improved user cold-start and data sparsity problem and the accuracy of recommendation.
作者 王博生 何先波 朱广林 郭军平 陶卫国 李丽 WANG Bosheng;HE Xianbo;ZHU Guanglin;GUO Junping;TAO Weiguo;LIli(College of Computer Science, China West Normal University, Nanchong,Sichuan 637009;School of Electronic Information Engineering, China West Normal University, Nanchong, Sichuan 637009;SiChuan Datacell-Borui Science & Technology Co.,Ltd, Nanchong, Sichuan 637000;Nanchong Civil Affairs Bureaueau, Nanchong, Sichuan 637000)
出处 《绵阳师范学院学报》 2019年第8期84-90,共7页 Journal of Mianyang Teachers' College
基金 四川省科技厅支撑项目(2018GFW0151) 四川省教育厅重大培育项目(13ZA0015) 西华师范大学英才基金项目(17YC149)
关键词 协同过滤 巴氏系数 修正余弦相似度 Jaccard相似度 Pearson相关系数 collaborative filtering Bhattacharyya coefficient adjustedcosine similarity Jaccard similarity Pearson correlation
  • 相关文献

参考文献5

二级参考文献93

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4Mobasher B, Anand S S. Intelligent techniques for Web personalization [ J ]. Lecture Notes in Computer Science, 2005,3169 : 1-36.
  • 5Resnick P, Varian H R. Recommender systems[ J]. Com- munications of the ACM, 1997,40 (3) :56-58.
  • 6Ahn A, Kim J K, Choi I Y, et al. A personalised recom- mendation procedure based on dimensionality reduction and Web mining[ J]. International Journal of Internet & Enter- prise Management, 2004,2 (3) :280-298.
  • 7Basu C, Hirsh H, Cohen W W. Recommendation as classi- fication: Using social and content-based information in rec- ommendation[C]//Proceedings of the Fifteenth National Conference on Artificial Intelligence. 1998:714-720.
  • 8Burke R. Hybrid recommender systems: Survey and exper- iments[ J ]. User Modelling and User-Adapted Interaction, 2002,12(4) :331-370.
  • 9Cohen W W, Fan W. Web collaborative filtering: Recom- mending music by crawling the Web [ J ]. Computer Net- works, 2000,33(1-6) :685-698.
  • 10Greco G, Greco S, Zumpano E. Collaborative filtering sup- porting Web site navigation [ J ]. AI Communications, 2004,17 (3) : 155-166.

共引文献263

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部