摘要
为实现淡水鱼品种的快速鉴别,采用近红外光谱分析技术建立7种淡水鱼鲜肉的快速鉴别模型。试验采集了鲢、草鱼、乌鳢、鲫、鲤、青鱼、鳙7种淡水鱼共772个鲜鱼肉样品的近红外光谱数据,分别考察标准正态变换(standard normalized variate,SNV)、多元散射校正(multiplicative signal correction,MSC)的预处理方法及核主成分分析(kernel principal component analysis,KPCA)和主成分分析(principal component analysis,PCA)的特征提取方法对支持向量机(support vector machine,SVM)判别模型的影响。结果显示,经SNV预处理和KPCA提取特征变量后,对未知样品的整体正确判别率达到92.68%。因此,采用近红外光谱技术结合化学计量学方法所建SVM模型可以实现淡水鱼品种的快速鉴别。
To realize the rapid identification of freshwater fish species,near infrared reflectance spectroscopy was employed to establish the identification models of fish species.772 samples of 7 freshwater fish species (silver carp,grass carp,snakehead,crucian carp,common carp,black carp,bighead carp) were prepared to collect near infrared spectra data.The effects of preprocessing methods including standard normalized variate (SNV),multiple scattering correction (MSC) and the feature extraction methods including kernel principal component analysis (KPCA) and principal component analysis (PCA) on the discrimination models of support vector machine (SVM) were investigated,respectively.The results showed that the overall accuracy rate was 92.68% for the unknown sample after the SNV preprocessing and KPCA extraction of characteristic variables.Therefore,the SVM model constructed by near infrared spectroscopy combined with chemometric methods is feasible for rapid identification of freshwater fish species.
作者
周娇娇
徐文杰
许竞
尤娟
熊善柏
ZHOU Jiaojiao;XU Wenjie;XU Jing;YOU Juan;XIONG Shanbai(College of Food Science and Technology,Huazhong Agricultural University,Wuhan 430070,China;National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan),Wuhan 430070,China;College of Science,Huazhong Agricultural University,Wuhan 430070,China;Environmental Food Science Key Laboratory of Ministry of Education,Wuhan 430070,China)
出处
《华中农业大学学报》
CAS
CSCD
北大核心
2019年第5期98-104,共7页
Journal of Huazhong Agricultural University
基金
现代农业产业技术体系专项(CARS-45-27)
湖北省技术创新专项重大项目(2016ABA115)
关键词
近红外光谱
特征提取方法
淡水鱼肉
水产品品质
支持向量机
鉴别
正确判别率
near infrared spectrum
feature extraction method
freshwater fish
aquatic product quality
support vector machine
identification
accuracy rate