期刊文献+

趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析 被引量:5

Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid
下载PDF
导出
摘要 基于趋旋性微生物和幂律流体模型,研究了在含有非 Newton 流体饱和多孔介质中生物对流的线性稳定性问题.利用 Galerkin 数值方法求解了该系统的控制方程,得到生物Rayleigh 数的数值解,讨论了非 Newton 流体的幂律指数对生物对流稳定性在假塑性流体和膨胀性流体间的变化规律.研究结果表明,随着幂律流体的速度增大,幂律指数对生物对流稳定性的影响会发生变化,并且这种变化会受到热Rayleigh 数和生物 Lewis 数的影响.另外,微生物趋旋性特征越明显,生物对流系统就越不稳定,而适当增大非 Newton 流体的幂律指数则有利于系统的稳定性. To study the stability of bioconvection in a non-Newtonian fluid-saturated porous medium,the linear stability analysis with the model for gyrotactic microorganisms and power-law fluids was carried out. Based on the Galerkin method,the governing equation was solved to get the numerical solution of the biological Rayleigh number,which represents the stability of bioconvection. The effects of various parameters on the change of power-law indexes were studied in detail. It is concluded that,as the fluid velocity increases,the influence of the power-law index on the stability of the bioconvection will change,and this change will be affected by the thermal Rayleigh number and the biological Lewis number. The results also show that,as the gyrotactic capability of microorganisms increases,the bioconvection stability will decrease,and properly increasing the power-law index is conducive to the stability.
作者 戴德宣 王少伟 DAI Dexuan;WANG Shaowei(School of Civil Engineering,Shandong University,Jinan 250061,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第8期856-865,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11672164)~~
关键词 生物对流 幂律流体 趋旋性 多孔介质 GALERKIN方法 bioconvection power-law fluid gyrotactic capability porous medium Galerkin method
  • 相关文献

参考文献3

二级参考文献32

  • 1董正远.含蜡原油管输的通用速度分布与温度分布[J].西安石油大学学报(自然科学版),2005,20(6):37-40. 被引量:1
  • 2朱克勤.非牛顿流体力学研究的若干进展[J].力学与实践,2006,28(4):1-8. 被引量:19
  • 3李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012.
  • 4Cheng S B,Skinner C D,Taylor J,Attiya S,Lee W E,Picelli G,Harrison D J.Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J].Analytical Chemistry,2001,73(7):1472-1479.
  • 5Buchholz B A,Doherty E A S,Albarghouthi M N,Bogdan F M,Zahn J M,Barron A E.Microchannel DNA sequencing matrices with a thermally controlled "viscosity switch"[J].Analytical Chemistry,2001,73(2):157-164.
  • 6Choban E R,Markoski L J,Wieckowski A,Kenis P J A.Microfluidic fuel cell based on laminar flow[J].Journal of Power Sources,2004,128(1):54-60.
  • 7LI Zhan-hua,WU Jian-kang,HU Guo-qing,HU Guo-hui.Fluid Flow in Microfluidic Chips[M].Beijing:Science Press,2012.
  • 8XUAN Xiang-chun,LI Dong-qing.Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J].Journal of Colloid and Interface Science,2005,289(1):291-303.
  • 9Zimmerman W B,Rees J M,Craven T J.Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction[J].Microfluidics and Nanofluidics,2006,2(6):481-492.
  • 10Wang J,Wang M,Li Z.Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J].Journal of Colloid and Interface Science,2006,296(2):729-736.

共引文献18

同被引文献42

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部