期刊文献+

广义正交模糊Maclaurin对称平均算子及其应用 被引量:6

Generalized Orthopair Fuzzy Maclaurin Symmetric Mean Operators and Their Application
下载PDF
导出
摘要 研究广义正交模糊决策环境下的集结算子及其决策应用。针对在信息集成时,需要考虑多个输入变量之间的相关关系以及专家的评价值为广义正交模糊信息的多属性决策问题,提出一种解决广义正交模糊多属性决策问题的方法。考虑到Maclaurin对称平均算子能够反映多个输入变量之间的相关关系,利用该算子集结广义正交模糊信息,提出了广义正交模糊Maclaurin对称平均算子、广义正交模糊加权Maclaurin对称平均算子,并研究了这些算子的性质和特殊情形。提出了基于广义正交模糊集结算子的多属性决策方法,并通过实例验证了其可行性和优势。 Aggregation operators under a generalized orthopair fuzzy environment with their application to decision making are investigated.For information fusion process in which the interrelationship among multiple input variables should be taken into account and multiple attribute decision making (MADM) problems wherein decision makers' evaluation values are generalized orthopair fuzzy information,a method to deal with generalized orthopair fuzzy MADM problems is proposed.Considering that the Maclaurin symmetric mean operator can reflect the interrelationship among multiple input variables,this paper utilizes it to aggregate generalized orthopair fuzzy information,proposes the generalized orthopair fuzzy Maclaurin symmetric mean operator,the generalized orthopair fuzzy weighted Maclaurin symmetric mean operator,and studies the properties and special cases of these operators. An MADM method is proposed based on generalized orthopair fuzzy aggregation operators,and its effectiveness and superiorities are verified through practical example.
作者 王军 张润彤 朱晓敏 WANG Jun;ZHANG Runtong;ZHU Xiaomin(School of Economics and Management,Beijing Jiaotong University,Beijing 100044,China;School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第8期1411-1421,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.71532002 北京交通大学基本科研业务费人文社会科学专项基金No.2016JBZD01~~
关键词 广义正交模糊集 广义正交模糊Maclaurin对称平均算子 多属性决策 generalized orthopair fuzzy sets generalized orthopair fuzzy Maclaurin symmetric mean operator multiple attribute decision making
  • 相关文献

参考文献3

二级参考文献18

  • 1Molodtsov D A.Soft Set Theory-first Results[J].Computers and Mathematics with Applications,1999,37(4):19-31.
  • 2Maji P K,Biswas R,Roy A R.Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):589-602.
  • 3Maji P K,Biswas R,Roy A R.Intuitionistic Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):677-692.
  • 4Yang Yong,Tan Xia,Meng Congcong.The Multi-fuzzy Soft Set and Its Application in Decision Making[J].Applied Mathematical Modelling,2013,37(7):4915-4923.
  • 5Lee K M.Bipolar-valued Fuzzy Sets and Their Basic Operations[C]//Proceedings of International Conference.Berlin,Germany:Springer-Verlag,2000:307-317.
  • 6Yang Yong,Peng Xindong,Chen Hao,et al.A Decision Making Approach Based on Bipolar Multi-fuzzy Soft Set Theory[J].Journal of Intelligent and Fuzzy Systems,2014,27(4):1861-1872.
  • 7Yager R R.Pythagorean Membership Grades in Multicriteria Decision Making[J].IEEE Transactions on Fuzzy Systems,2014,22(4):958-965.
  • 8Yager R R,Abbasov A M.Pythagorean Membership Grades,Complex Numbers,and Decision Making[J].International Journal of Intelligent Systems,2013,28(5):436-452.
  • 9Atanassov K.Intuitionistic Fuzzy Sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
  • 10Zhang Xiaolu,Xu Zeshui.Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets[J].International Journal of Intelligent Systems,2014,29(12):1061-1078.

共引文献69

同被引文献37

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部