期刊文献+

基于深度神经网络的空气质量预测系统 被引量:2

Study on air quality predictions system based on deep neural network
下载PDF
导出
摘要 提出了使用深度栈式自编码模型进行空气质量预测.选择了PM2.5、PM10等污染物数据作为样本.本模型基于Java平台构建,进行了训练和参数调整,建立了最优的空气预测模型.根据北京市的实验结果表明,该模型具有良好的精度.与支持向量回归(SVR)模型和线性回归模型相比,本文提出的模型具有优越的性能. This paper proposed a deep stacker auto-encoder learning model to predict the air quality.Selected PM 2.5,PM 10 and other pollutant data as a sample.The model was constructed on the JAVA platform,and the training and parameter adjustment were carried out to establish the optimal air prediction model.The experimental results based on the Beijing region showed that the proposed method had a good accuracy.Moreover,a comparison with the support vector regression(SVR)models and linear regression(LR)models demonstrated that the proposed method of performing air quality predictions had a superior performance.
作者 康兵兵 党鑫 KANG Bing-bing;DANG Xin(School of Computer Science & Software Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2019年第3期322-326,共5页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 栈式自编码网络 空气质量 预测 深度学习 机器学习 神经网络 stacked auto-encoder network air quality prediction deep learning machine learning neural network
  • 相关文献

同被引文献25

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部