摘要
提出了使用深度栈式自编码模型进行空气质量预测.选择了PM2.5、PM10等污染物数据作为样本.本模型基于Java平台构建,进行了训练和参数调整,建立了最优的空气预测模型.根据北京市的实验结果表明,该模型具有良好的精度.与支持向量回归(SVR)模型和线性回归模型相比,本文提出的模型具有优越的性能.
This paper proposed a deep stacker auto-encoder learning model to predict the air quality.Selected PM 2.5,PM 10 and other pollutant data as a sample.The model was constructed on the JAVA platform,and the training and parameter adjustment were carried out to establish the optimal air prediction model.The experimental results based on the Beijing region showed that the proposed method had a good accuracy.Moreover,a comparison with the support vector regression(SVR)models and linear regression(LR)models demonstrated that the proposed method of performing air quality predictions had a superior performance.
作者
康兵兵
党鑫
KANG Bing-bing;DANG Xin(School of Computer Science & Software Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2019年第3期322-326,共5页
Journal of Harbin University of Commerce:Natural Sciences Edition
关键词
栈式自编码网络
空气质量
预测
深度学习
机器学习
神经网络
stacked auto-encoder network
air quality
prediction
deep learning
machine learning
neural network