期刊文献+

超分辨率卷积神经网络算法在高速摄影图像优化中的应用 被引量:1

Application of Super-Resolution Convolutional Neural Network Algorithm in Image Optimization for High Speed Photography
下载PDF
导出
摘要 针对高速摄影系统实时采集的图像几次局部放大后的优化问题,对超分辨率卷积神经网络算法(SRCNN)的非线性映射层进行调优,增大滤波器f2值,并与传统的双三次插值算法仿真处理后的结果进行比较。仿真结果表明:调优后的SRCNN算法具有更高的平均峰值信噪比PSNR。 The optimization problem of the image after several times of partial enlargement was studied in this paper.The nonlinear mapping layer of the super-resolution deep learning algorithm Super-Resolution Convolutional Neural Network(SRCNN) was optimized and the size of the filter f 2 was increased.Then the processed result was compared with that by the traditional bicubic interpolation algorithm.The simulation results showed that the optimized SRCNN algorithm had higher peak signal-to-noise ratio(PSNR).
作者 高林 GAO Lin(Xi'an Aerospace Propulsion Test Technology Institute,Xi'an 710100,China)
出处 《载人航天》 CSCD 北大核心 2019年第4期514-517,共4页 Manned Spaceflight
关键词 高速摄影 超分辨率 深度学习 图像优化 high-speed photography super-resolution deep learning image optimization
  • 相关文献

参考文献2

二级参考文献18

  • 1ELAD M. FEUER A. Restoration of a single superresolu- lion image from several bhtrred, noisy, and undersampled measured images [ J ]. [EEE Transactions on Image Processing, 1997,6(12) : 1646 - 1658.
  • 2GREENSPAN H, OZ G, KIRYATI N, et al. Super - resolu- tion in MRI : Proceedings tff the IEEE International Sympo- sium on Biomedical Imaging[ C ]. Washington, ISBI,2002 : 943 - 946.
  • 3KENNEDY J A, ISRAEL O, FRENKEL A, et al. Super - resolution in PET imaging [ J ]. IEEE Transactions on Medical Imaging,2006,25 (2) : 137 - 147.
  • 4HARDIER C, BARNARD K J, ARMSTRONG E E. Joint MAP registration and high- resolution image estimation using a sequence of umlersampled images [ J ]. IEEE Transactions on Image Processing, 1997,6 (12) : 1621 - 1633.
  • 5BAKER S, KANADE T. Limits on super - resolution and how to break them [ J ]. IEEE Transactions on Pattern Analysis aml Machine Intelligence, 2002,24 ( 9 ) : 1167 - 1183.
  • 6PICKUP L C, ROBERTS S J, ZISSERMAN A. A sampled texture prior fbr image super - resolution[ C]. in Proceed- ings of Advances ill Neural hfformation Processing Systems 16 (NIPS03), S. Thrun, L. Saul, and B. Schlkopf, Eds. , MIT Press, Vancouver, British Columbia, Canada, 2004 : 1587 - 1594.
  • 7LIU C, SHUM H, FREEMAN W T. Face hallucination: Theory and practice [ J ]. International Journal of Computer Vision ,2007,75 ( 1 ) : 115 - 134.
  • 8FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Learning low - level vision [ J ]. International journal of computer vision,2000,40( 1 ) :25 -47.
  • 9WANG Q, TANG X, SHUM H. Patch based blind image super resolution[ C]. proceedings of the tenth IEEE Inter- national Conrerence on Computer Vision, 2005, Beijing, ICCV,2005,1:709 - 716.
  • 10CHANG H, YEUNG D, XIONG Y. Super - resolution through neighbor embedding: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 [ C ]. Washington, CVPR, 1:275 - 282.

共引文献40

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部