期刊文献+

多伯努利滤波细胞追踪方法研究

MeMBer filter cell tracking method
下载PDF
导出
摘要 现代医学诊断依赖于细胞运动状态的检查结果.为了准确获取活体细胞在一定时期内包括新生、分裂、消亡的生命活动的相关信息,为医学病理鉴定与研究提供准确可靠的实数据与定量分析结果,本文针对活体细胞追踪问题,将基于多伯努利滤波器(Multi-Bernoulli filter,MeMBer)的多目标追踪技术引入微观细胞领域的追踪中.本文将细胞个体模拟为椭圆形,对目标形态进行了估计.运用数学形态学对椭圆形的长轴、短轴、核心坐标、倾斜角度等形态特征与运动特征进行测定.本文基于多伯努利滤波器推导了一种细胞追踪算法,在分析目标观测似然函数的基础上,把利用观测似然函数对预测得到的目标状态当成量测信息进行更新,从而消除预测时带来的误差与杂波的干扰.该方法可应用于一般细胞运动状态下的活体细胞追踪.通过仿真实验验证了所得算法的有效性. Many medical diagnostic results depend on the results of the examination of the state of motion of the cells.In order to accurately obtain the information of living cells activities including newborn,division and extinction in a certain period of time,and provide accurate and reliable real data and quantitative analysis results for medical pathology identification and research,this paper will focus on the problem of live cell tracking.The multi-target tracking technique based on Multi-Bernoulli filter(MeMBer)is introduced into the micro cell tracking.The innovation lies in the simulation of the individual cells into elliptical shapes,which are facilitated with the fitting of target shape.The shape parameters of a cell are uniquely determined by using mathematical morphology to measure features including the elliptical long axis,short axis,core coordinates,and tilt angle etc.The method can be applied to living cell tracking in general cell motion state.Finally,the effectiveness of the proposed algorithm is verified by simulation experiments.
作者 邓洁妮 张超越 黄兆玮 李宗泽 史春妹 DENG Jieni;ZHANG Chaoyue;HUANG Zhaowei;LI Zongze;SHI Chunmei(College of Science,Northeast Forestry University,Harbin 150040,China)
出处 《智能计算机与应用》 2019年第4期144-148,共5页 Intelligent Computer and Applications
基金 中央高校基本科研业务费专项基金(2572018BC07) 东北林业大学大学生创新训练项目(201810225465)
关键词 细胞追踪 多伯努利滤波 椭圆模型 cell tracking MeMBer filter ellipse model
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Y Wei. Circle Detection Using Improved Dynamic Generalized Hough Transform (IDGHT)[A]. 1998 International Geoscience and Remote Sensing Symposium (IGARSS98)[C]. USA: IEEE Publications, 1998.1190-1192 .
  • 2[2]S C Zhang, Z Q Liu. A new algorithm for real-time ellipse detection[A]. 2003 International Conference on Machine Learning andCybernetics[C]. USA: IEEE Publications, 2003.602-607
  • 3[3]T Kawaguchi, R I Nagata. Ellipse detection using a genetic algorithm[A]. Proceedings of the 14th International Conference on Pattern Recognition[C]. USA: IEEE Computer Society Press, 1998.141-145.
  • 4[4]Q Ji, R M Haralick. A statistically efficient method for ellipse detection[A]. Proceedings Of 1999 International Conference on Image Processing[C]. USA: IEEE Computer Society Press, 1999.730-734.
  • 5[5]Y H Xie,Q Ji. A new efficient ellipse detection method[A]. Proceedings of the 16th International Conference on Pattern Recognition[C].USA: IEEE Computer Society Press, 2002. 957-960.
  • 6[6]O M Elmowafy, M C Fairhurst. Improving ellipse detection using a fast graphical method[J]. Electronics Letters, 1999,35(2):135- 137.
  • 7杨忠根,马彦.使用广义正交概念的K-RANSAC椭圆提取[J].自动化学报,2002,28(4):520-526. 被引量:9

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部