期刊文献+

基于Spark的电网工控系统流量异常检测平台 被引量:2

Flow Anomaly Detection Platform for Power Grid Industrial Control System Based on Spark
下载PDF
导出
摘要 针对传统的电力网络流量检测安全预警系统在面对海量高维度数据时,其在精度、实时性、扩展性以及效率上都无法满足需求的问题,建立出一种基于Spark的电网工控系统流量异常检测平台.该平台以Spark为计算框架,主要由数据采集与网络流量深度包检测协议解析模块,实时计算数据分析处理模块,安全预警预测模块和数据存储模块组成,为流量异常检测提出了一套完整的流程.实验结果表明,该平台能够有效地检测出异常流量,做出安全预警,方便工作人员及时做出决策,这充分说明该平台非常适用于电力控制系统,能够应对海量高维复杂数据做出实时分析以及安全预警,极大地提高了电网工控系统的安全性能. Aiming at the problem that the traditional power network traffic detection and security warning system cannot meet the demand in terms of accuracy, timeliness, expansibility, and efficiency in facing of massive high-dimensional data, a Spark based traffic anomaly detection platform for power grid industrial control system is established. The platform takes Spark as its computing framework, which is mainly composed of data acquisition and network traffic deep packet detection protocol parsing module, real-time computing data analysis and processing module, security warning and prediction module, and data storage module, to complete process for traffic anomaly detection. Experimental results show that the platform can effectively detect the abnormal flow, make the safety warning, convenient for staff to make decisions in time. This fully shows that the platform is very suitable for electric control system, can deal with massive amounts of high-dimensional complex data real time analysis and early warning, greatly improve the safety performance of the power grid control system.
作者 张艳升 李喜旺 李锦程 ZHANG Yan-Sheng;LI Xi-Wang;LI Xi-Wang(Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;University of Chinese Academy of Sciences, Beijing 100049, China;State Grid Liaoning Electric Power Co. Ltd., Shenyang 110004, China)
出处 《计算机系统应用》 2019年第8期46-52,共7页 Computer Systems & Applications
基金 国家科技重大专项(2017ZX01030-201)~~
关键词 SPARK 流量异常检测 电网工控系统 Kafka DEEP Learing 4J Spark flow anomaly detection power grid industrial control system Kafka Deep Learning 4J
  • 相关文献

参考文献7

二级参考文献104

  • 1蒋盛益,李庆华.无指导的入侵检测方法[J].计算机工程,2005,31(9):31-33. 被引量:4
  • 2陈晓梅.入侵检测中的数据预处理问题研究[J].计算机科学,2006,33(1):81-83. 被引量:13
  • 3李凯,薛一波,王春露,汪东升.千兆网络入侵防御系统高速数据包处理的研究与实现[J].小型微型计算机系统,2006,27(9):1677-1681. 被引量:4
  • 4中国国家化标准委员会.GB/T20984-2007,信息安全风险评估规范[S].北京:中国国家化标准委员会,2007.
  • 5黄俊,韩玲莉,陈光平.基于无指导离群点检测的网络入侵检测技术[J].小型微型计算机系统,2007,28(11):2007-2009. 被引量:4
  • 6Wang Gang, Hao Jinxing, Ma Jian, et al. A new approach to intrusion detection using artificial neural networks and fuzzy clustering [J]. Expert SystAppl, 2010, 37 (9), 6225-6232.
  • 7Rouhi R, Keynia F, Amiri M. Improving the intrusion detec- tion systems performance by correlation as a sample selection method [J]. Journal of Computer Sciences and Applications, 2013, 1 (3): 33-38.
  • 8Song J, Zhu Z, Scully P, et al. Selecting features for anomaly intrusion detection: A novel method using fuzzy C means and decision tree classification [M] //Cyberspace Safety and Secu- rity. Springer International Publishing, 2013: 299-307.
  • 9Idrees F, Rajarajan M, Memon AY. Framework for distribu- ted and self-healing hybrid intrusion detection and prevention system [C] //International Conference on ICT Convergence. IEEE, 2013: 277-282.
  • 10Kim G, Lee S, Kim S. A novel hybrid intrusion detection method integrating anomaly detection with misuse detection [J]. Expert Systems with Applications, 2014, 41 (4): 1690-1700.

共引文献82

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部