期刊文献+

混合储能微电网并网调度多目标灰熵烟花算法 被引量:1

Multi-Objective Grey Entropy Fireworks Algorithm for Grid-Connected Scheduling of Hybrid Energy Storage Microgrid
下载PDF
导出
摘要 针对混合储能微电网调度优化问题,建立并网状态下经济收益、污染处理费用的混合储能微电网多目标优化模型.以基本烟花算法为框架,结合灰熵并行分析理论,提出一种多目标灰熵烟花算法.所提算法通过分配给模型的两个目标不同的熵值权重,有效处理不同目标间的冲突性.以灰熵并行关联度作为烟花算法的适应度选择优秀烟花个体,引导其向更优区域进化搜索.仿真结果表明,所提多目标灰熵烟花算法的性能要优于基于随机权重和基于Pareto支配的烟花算法,且优于经典的NSGA-Ⅱ多目标算法,验证了所建多目标模型及所提多目标算法的有效性. Aiming at the scheduling optimization problem of hybrid energy storage microgrid, a multi-objective optimization model with economic benefit and pollution treatment cost under grid-connected state is established. Based on the basic fireworks algorithm and the grey entropy parallel analysis theory, a multi-objective grey entropy fireworks algorithm is proposed. The proposed algorithm can effectively handle the conflict relationship between different objectives by assigning different entropy weights to the two studied objectives. The grey entropy parallel correlation degree is adopted as the fitness of fireworks algorithm to select excellent individuals and guide the algorithm to better search region. Simulation results show that the performance of the proposed multi-objective grey entropy fireworks algorithm is significantly better than that of the random weight-based and Pareto-based fireworks algorithm, and better than that of the classical NSGA-Ⅱ algorithm, which verifies the effectiveness of the established multi-objective model and proposed multi-objective algorithm.
作者 黄敏 贺利军 HUANG Min;HE Li-Jun(Changde Power Supply Company, State Grid Hunan Electric Power Co. Ltd., Changde 415000, China;School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)
出处 《计算机系统应用》 2019年第8期176-182,共7页 Computer Systems & Applications
基金 河南省科技厅项目(172102210081)~~
关键词 混合储能微电网 多目标优化 烟花算法 灰熵并行分析 熵值权重 hybrid energy storage microgrid multi-objective optimization fireworks algorithm grey entropy parallel analysis entropy weight
  • 相关文献

参考文献5

二级参考文献53

  • 1刘山凤,龙江,方韬.风光互补新能源成新趋势[J].电气技术,2008,9(12):69-71. 被引量:20
  • 2李政,王德慧,薛亚丽,李东海.微型燃气轮机的建模研究(上)——动态特性分析[J].动力工程,2005,25(1):13-17. 被引量:22
  • 3徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598. 被引量:38
  • 4徐大明,康龙云,曹秉刚.风光互补独立供电系统的优化设计[J].太阳能学报,2006,27(9):919-922. 被引量:45
  • 5Shahirinia A H, Tafreshi S M M, Hajizadeh Gastaj A, et al. Optimal sizing of hybrid power system using genetic algorithm[C], 2005 International Conference on Future Power Systems, 2005:2-5.
  • 6Xu Daming, Kang Longyun, Chang Liuchen, et al Optimal sizing of standalone hybrid wind/PV power systems using genetic algorithms[C]. 2005 .CanadianConference on Electrical and Computer Engineering, 2005: 1722-1725.
  • 7Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization[C]. Proceedings of the 1999 Congress onEvolutionary Computation, Piscataway, Nanjing, 1999: 98-105.
  • 8Srinivas N, optimization algorithms[J] Computation, Deb K. Multiobjective function using nondominated sorting genetic IEEE Transactions on Evolutionary 1995, 2(3): 221-248.
  • 9Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm- NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-186.
  • 10IEEE Guide for Array and Battery Sizing in Stand- Alone Photovoltaic Systems[S]. IEEE Standards Coordinating Committee 21, New York, USA, 2008.

共引文献93

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部