期刊文献+

无限大单板和空腔双板隔声量研究 被引量:2

Study on Sound Transmission Losses of Infinite Panels and Hollow Double Panels
下载PDF
导出
摘要 考虑声波垂直入射和斜入射两种情况,针对无限大单板和空腔双板两种结构,运用波传递法和结构弯曲波法分别得到这2种结构的隔声量,给出隔声谷值的计算公式并分析其物理意义,包括“板-空腔-板”共振频率、驻波共振频率和板的吻合频率。通过隔声量曲线对比,描述两条曲线变化过程和整体变化趋势,进而对波传递法和结构弯曲波法的优缺点进行分析。对于薄板结构,当声波垂直入射时,波传递法和结构弯曲波法的隔声量曲线相互吻合,通过推导得到两种方法的等效条件;当声波斜入射时,波传递法的计算结果变得不精确,而结构弯曲波法的计算结果依然具有可靠性。 Considering vertical and oblique incidences of acoustic waves, the sound insulations of the infinite panel and the hollow double panel are analyzed by using wave transfer method (WTM) and structural bending wave method (BWM). Their sound insulation curves and valleys are obtained. Calculation formulas and physical meanings of the sound insulation valleys are given, including the "mass-cavity-mass" resonance frequency, standing wave resonance frequency, and panel coincidence frequency. Through the mutual comparison of the two sound insulation curves, the change processes and the overall change trends are depicted. Furthermore, the advantages and disadvantages of the two methods of WTM and BWM are discussed. For the thin plate structure, when the acoustic wave is vertically incident, the sound insulation curves provided by WTM and BWM coincide perfectly each other. And the equivalent conditions of the two methods are derived. When the acoustic wave is obliquely incident, the calculation result by WTM becomes inaccurate, while the calculation result by BWM is still reliable.
作者 黄梦情 陈美霞 HUANG Mengqing;CHEN Meixia(School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology, Wuhan 430074, China)
出处 《噪声与振动控制》 CSCD 2019年第4期52-58,共7页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51779098)
关键词 声学 无限大单板 空腔双板 波传递法 结构弯曲波法 等效条件 acoustics infinite single panel hollow double-panel partition wave transfer method (WTM) bending wave method (BWM) equivalent condition
  • 相关文献

参考文献2

二级参考文献12

  • 1冯正.轻结构隔声原理与应用技术[M].北京:科学出版社,1987.11-70.
  • 2Mulholland K A, Price A J. Transmission loss of multiple panels in a random incidence field. Journal of the Acoustical Society of America, 1968, 43(6): 1 432-1 435.
  • 3Kurtze G, Watters B G. New wall design for high transmission loss or high damping. Journal of the Acoustical Society of America, 1959, 31 ( 6 ) :739- 748.
  • 4Makris S E, Dym C L. Transmission loss optimization in acoustic sandwich panels. Journal of the Acoustical Society of America, 1986, 79(6):1 833-1 843.
  • 5Bolton J S, Green E R. Normal incidence sound transmission through double-panel systems line dwith relatively stiff, partially reticulated polyurethane foam. Applied Acoustics, 1993, 39:23-51.
  • 6Sgard F C, Atalla N, Nicolas J. A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. Journal of the Acoustical Society of America, 2000, 108(6) :2 865-2 872.
  • 7Zhan S, Cheng J C. Existence of broad acoustic bandgaps in three-component composite. Physical Review B, 2003, 68(15):1-6.
  • 8Baluni V, Willemsen J. Transmission of acoustic waves in random layered medium. Physical Review A, 1985, 31(5): 3 358-3 363.
  • 9Luan P G, Ye Z. Acoustic wave propagation in a one-dimensional layered system. Physical Review E, 2001, 63:1-8.
  • 10Munday J N, Bennett C B. Band gaps and defect modes in periodically structured waveguides.Journal of the Acoustical Society of America,2002, 112(4): 1 353-1 358.

共引文献33

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部