期刊文献+

基于改进DBSCAN算法的出租车载客热点区域挖掘研究 被引量:7

Rearch on Mining Taxi Pick-up Hotspots Area
下载PDF
导出
摘要 出租车载客热点区域对出租车寻客具有指导意义,针对现有密度聚类方法存在聚类精细程度不足的问题,提出改进的DBSCAN密度聚类算法用于出租车载客热点区域挖掘.首先,以道路交叉口、道路转弯点为节点提取道路拓扑结构;然后,使用A*算法进行寻路并以路段为单位提取邻域内载客点进行聚类,加快聚类速度.最后,使用成都市浮动车订单轨迹数据与订单数据进行验证,与传统的DBSCAN算法相比,本算法可以挖掘出更精细的载客热点,同时具有更好地稳定性. The taxi pick-up hotspot area has guiding significance for taxis riders. Aiming at the problem that the existing density clustering method has insufficient clustering degree, this paper proposes an improved DBSCAN method for mining taxi pick-up hotspot areas. First, the topology is obtained by taking road intersections and road inflection points as nodes;Then, this paper uses the A* algorithm and passenger points to extract and cluster road segments. This paper uses Chengdu s floating car trajectory data and order data provided by DiDiChuXing for verification. Compared with DBSCAN, this algorithm can mine more detailed taxi pick-up hotspot areas and has better stability.
作者 鲍冠文 刘小明 蒋源 尚春琳 董路熙 唐少虎 BAO Guanwen;LIU Xiaoming;JIANG Yuan;SHANG Chunlin;DONG Luxi;TANG Shaohu(North China University of Technology,Beijing Key Lab of Urban Road Traffic Intelligent Tech, Beijing 100144,China;Beijing Urban System Engineering Research Center,Beijing 100035,China)
出处 《交通工程》 2019年第4期62-69,共8页 Journal of Transportation Engineering
基金 北京市自然科学基金(8172018) 北京市自然科学基金项目(8184070) 中国博士后科学基金资助项目(2017M620673)
关键词 车辆轨迹 载客热点 DBSCAN算法 A*寻路算法 vehicle trajectory taxi pick-up hotspots DBSCAN algorithm A* pathfinding algorithm
  • 相关文献

参考文献6

二级参考文献48

  • 1MarkDeloura.A*速度优化.游戏编程精粹1[M].北京:人民邮电出版社,2004:240.
  • 2Kumar Pawan. Efficient Path Finding for 2D Games (Proceedings of CGAIDE'2004)[C]. Game Simulation and Artificial Intelligence Centre (GSAI), 2004: 265-266.
  • 3Yngvi Bjornsson. Fringe Search: Beating A" at Pathfinding on Game Maps[R]. School of Computer Science Reykjavik UniversityReykjavik, Iceland IS-103.
  • 4靳旭栋.游戏领域中启发式寻径算法的运用和优化[D].上海:华东师范大学硕士学位论文,2006.
  • 5EmilMatthew. Introduction to Heuristics Search--A" Algorithm Principle and Practice[-DB/OL3. http://emilmatthew. 51. net/ EmilPapers/0632AStarSearch, 2006.
  • 6Jahangiri A, Rakha H (2014) Developing a support vector machine classifier for transportation mode identification using mobile phone sensor data. Proceedings of the 93th annual meeting of the transportation research board 2014, Transportation Research Board, Washington, D.C.
  • 7Gong L, Mofikawa T, Yamamoto T, Sato H (2014) Deriving personal trip data from GPS data: a literature review on the existing methodologies. Procedia-Soc Behav Sci 138:557-565.
  • 8Schuessler N, Axhausen KW (2009) Processing GPS raw data without additional information. Proceedings of the 88th annual meeting of the transportation research board, Washington D.C.
  • 9Stopher P, Bullock P, Jiang Q (2002) GPS, GIS and personal travel surveys: an exercise in visualisation. 25th Australasian transport research forum incorporating the BTRE transport policy colloquium, Canberra.
  • 10Stopher PR, Jiang Q, FitzGerald C (2005) Processing GPS data from travel surveys. Proceedings of the 2nd Int. colloquium on the behavioral foundations of integrated land-use and trans- portation models: frameworks, models and applications. Toronto.

共引文献51

同被引文献71

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部