期刊文献+

寒区城市轨道交通合理分担率研究 被引量:1

Research on Reasonable Sharing Rate of Urban Rail Transit in Cold Regions
下载PDF
导出
摘要 为了给寒区城市轨道交通线网规模计算提供理论依据,从城市管理者和出行者两方面出发,选取影响管理者的能源、环境、收益指标,以及影响出行者的经济、效率、安全、舒适性指标,构建了寒区城市轨道交通分担率的计算模型.在对管理者与出行者指标量化的基础上,选取典型寒区城市哈尔滨市为案例,计算给出了各种机动车出行方式的分担率计算结果.结果表明,哈尔滨市城市轨道交通的合理分担率为18.26%. In order to study the scale of urban rail transit network in cold regions, based on urban managers and travelers, the calculation model of urban rail transit sharing rate in cold regions was established by selecting energy, environment, income indicators that affect managers and economic, efficiency, safety and comfort indicators that affect travelers. On the basis of quantifying the indexes of managers and travelers, Harbin, a typical cold region city, was selected as a case to calculate and give the calculation results of the sharing rate of various motor vehicle travel modes. The results show that the reasonable share rate of Harbin urban rail transit is 18.26%.
作者 冯天军 程国柱 马俊风 FENG Tianjun;CHENG Guozhu;MA Junfeng(School of Transportation Science and Engineering,Jilin JianzhuUniversity,Changchun 130118,China;School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China;School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2019年第4期617-621,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 吉林省教育厅“十三五”科学技术研究项目资助(JJKH20180609KJ)
关键词 城市轨道交通 分担率 寒冷地区 双层规划 管理者 出行者 urban rail transit split rate cold region bi-levelprogramming manager traveler
  • 相关文献

参考文献2

二级参考文献18

  • 1陈平雁,黄浙明.SPSS10.0统计软件高级应用教程[M].北京:人民军医出版社,2003:566.
  • 2Prasad V. Palacharla, Peter C . Nelson. Application of fuzzy logic and neural networks for dynamic travel time estimation[J] . International Transactions in Operational Research. 6 (1999)145-160.
  • 3M.Tada, H.ishit . An Integrated Fuzzy Transportation Problem[J] . Computer Mathematic Application Vol.31No.9 (1996) 71-87.
  • 4Y-H Chang, C-H Yeh, J-H Cheng. Decision Support for Bus Operations under Uncertain: a Fuzzy Expert Systemapproach[J]. Omega. Int. j. Mgmt Sci. Vol.26 No.3 (1998)367-380.
  • 5Chung-Hsing, Yeh,Hepu Deng, Yu-Hern Chang. Fuzzy Multicriteria Analysis for Performance Evaluation of Bus Companies[J] . European Journal of Operstional Research 126 (2000) 459-473.
  • 6Jacck Zak . The Methodology of Multiple-Criteria Decision Making in The Optimization of an Urban Transportation System: Case Study of Poznan City in Poland[J] . International Transactions in Operational Research 6(1999) 571-590.
  • 7Shinya Kikuchi . Use of Fuzzy Inference for Modeling Prediction of Transit Ridership at Individual Stops[C].2001 Annual Meeting of Transportation Research Board,and for publication in Transportation Research Record.TRB ID 01-2669.
  • 8刘武,李文子.城市公交服务乘客满意度指数模型[J].城市交通,2007,5(6):65-69. 被引量:36
  • 9Ofla J. D., Ofia R. D., Eboli L., et al. Perceived service quality in bus transit service: a structural equation approach [J]. Transport Policy, 2013, 29: 219-226.
  • 10Lee J. H., Jin B. S., Ji Y. G. Development of a structural equation model for ride comfort of Korean high-speed railway [J]. International Journal ofIndustrial Ergonomics, 2009, 39(1): 7-14.

共引文献29

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部