期刊文献+

气液两相喷射器喷嘴型线优化设计 被引量:5

Optimal design of nozzle profile for gas-liquid two phase ejector
原文传递
导出
摘要 采用均相流模型一维计算方法,优化设计两相喷射器的工作喷嘴型线,与对应工况锥形喷嘴的流动参数进行对比。运用流体动力学方程,先使用等压降方法计算喷嘴型线,进而采取更适合两相流动的等速度梯度数学方法来优化型线。结果表明:在流场出口压力以及出口速度差值在1%以内的情况下,相较于锥形结构喷嘴,此方法得到的喷嘴结构贴合两相流膨胀加速过程,关键位置压力降变化稳定,膨胀波发生位置后移90%,喉部后的流体平稳区域是其5倍,加强对超音速流体的适应能力,得到良好品质的出口流场,使喷射器中工作流体和引射流体的初步混合不偏离理想混合压力,降低对喷射系数的影响。 A one - dimensional calculation method of homogeneous flow model was used to optimize the design of the work ing nozzle line of the two - phase ejector, and the flow parameters of the conical nozzle were compared with the corresponding working conditions. Using the hydrodynamic equation, the nozzle type line was calculated first by using the equal pressure drop method, and then the equal velocity gradient mathematical method which was most suitable for two - phase flow was adopted to optimize the line. The results show that under the condition that the outlet pressure of the flow field and the difference of outlet speed is less than 1 %, compared with the conical structure nozzle, the pressure drop at the critical position is stable, the position of the expansion wave is shifted by 90%, and the fluid stable area behind the throat is 5 times, which enhances the adaptability to supersonic fluid. The good quality outlet flow field is obtained, so that the initial mixing of working fluid and ejection fluid in the ejector does not deviate from the ideal mixing pressure and reduces the influence on the injection coefficient.
作者 刘昌鹏 刘向农 李学靖 吴涛 陈炎 Liu Changpeng;Liu Xiangnong;Li Xuejing;Wu Tao;Chen Yan(School of Automotive and Traffic Engineering,Hefei University of Technology, Hefei 230009,China)
出处 《低温与超导》 CAS 北大核心 2019年第7期82-86,共5页 Cryogenics and Superconductivity
关键词 喷射器 两相流 均相模型 等速度梯度 膨胀波 Ejecto Two phase flow Homogeneous model Equal velocity gradient Expansion wave
  • 相关文献

参考文献4

二级参考文献20

  • 1杨德伟,林日亿,王弥康,艾利兵.利用喷射器技术输送低压气层天然气[J].油气田地面工程,2005,24(4):10-12. 被引量:26
  • 2Alexis G K, Karayiarmis E K. A solar ejector cooling system using refrigerant R134a in the Athens area [J]. Renewable energy, 2005,30 : 1457 - 1469.
  • 3Zhu Yinhai, Cai Wenjian, Wen Changyun, et al. Numerical investigation of geometry parameters for design of high performance ejectors [J]. Applied Thermal Engineering,. ( in press).
  • 4Selvaraju A, Mani A. Experimental investigation on R134a vapour ejector refrigeration system[J].International Journal of Refrigeration, 2006,29 : 1150 - 1166.
  • 5曹学文,陈丽,林宗虎,杜永军.用于超声速旋流分离器中的超声速喷管研究[J].天然气工业,2007,27(7):112-114. 被引量:28
  • 6连续介质力学,1986年
  • 7Kornhauser A A.The use of an ejector as a refrigerant expander[A].Proceeding of the 1990 USNC/IIR-Purdue Refrigeration Conference[C].Indiana,USA:Purdue University,1990.10-19.
  • 8Domanski P A.Theoretical Evaluation of the Vapor Compression Cycle with a Liquid-Line/ Suction-Line Heat Exchanger,Economizer,and Ejector[R].Nistir-5606,National Institute of Standards and Technology,1995.
  • 9Harrell G S,Kornhauser A A.Performance tests of a two-phase ejector[A].Proceedings of the 30th Intersociety Energy Conversion Engineering Conference[C].Orlando,FL:American Society of Mechanical Engineers(ASME),1995.49-53.
  • 10Menegay P,Kornhauser A A.Improvements to the ejector expansion refrigeration cycle[A].Proceedings of the 31th Intersociety Energy Conversion Engineering Conference[C].Washington DC:American Society of Mechanical Engineers(ASME),1996.702-706.

共引文献61

同被引文献41

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部