期刊文献+

基于多尺度特征提取和全连接条件随机场的图像语义分割方法 被引量:6

Image Semantic Segmentation Based on Multi-Scale Feature Extraction and Fully Connected Conditional Random Fields
原文传递
导出
摘要 针对图像语义分割中图像的上下文信息利用不充分、边缘分割不清等问题,提出一种基于多尺度特征提取与全连接条件随机场的网络模型。分别以多尺度形式将RGB图像和深度图像输入网络,利用卷积神经网络提取图像特征;将深度信息作为补充信息添加到RGB特征图,得到语义粗分割结果;采用全连接条件随机场优化语义粗分割结果,最终得到语义精细分割结果。实验结果表明,所提方法提高了图像语义分割的精度,优化了图像语义分割的边缘,具有实际应用价值。 Aiming at the problems of insufficient usage of context information and unclear image edge segmentation in image semantic segmentation, a network model based on multi-scale feature extraction and fully connected conditional random fields is proposed. RGB and depth images are input into the network in a multi-scale form, and their features are extracted by a Convolutional neural network. Depth information is added to supplement the RGB feature map and obtain a rough semantic segmentation, which is optimized by the fully connected conditional random fields. Finally, fine semantic segmentation results are obtained. This proposed method improves the precision of semantic segmentation and optimizes the image edge segmentation, which has a practical application.
作者 董永峰 杨雨䜣 王利琴 Dong Yongfeng;Yang Yuxin;Wang Liqin(School of Artificial Intelligence, Hebei University of TecJmology, Tianjin 300401, China;Hebei Provincial Key Laboratory of Big Data Computingt Tianjin 300401,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第13期101-109,共9页 Laser & Optoelectronics Progress
基金 天津市基础研究计划(17JCTPJC55400) 天津市基础研究计划(17JCTPJC55600) 河北省自然科学基金(F2017202145)
关键词 图像处理 图像语义分割 卷积神经网络 多尺度特征 深度学习 全连接条件随机场 image processing image semantic segmentation Convolutional neural network multi-scale feature deep learning fully connected conditional random field
  • 相关文献

参考文献6

二级参考文献63

  • 1Jian Yao, Sanja Fidler, Raquel Urtasun, et ai. Describing the scene as a whole;Joint object detection,scene clas- sification and semantic segmentation[A]. Proc. of CVPR [C]. 2012,702-709.
  • 2Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images [A]. Proc, of International Conference of Computer Vi- sion (IOOV)[C]. 2011,105-112.
  • 3DAI Ji-feng, HE Kai-ming, SUN Jian, et al. Convolutional feature masking for joint object and stuff sgementation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015,510-516.
  • 4Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images [A]. Proc, of International Conference of Computer Vi- sion (IOOV)[C]. 2011,105-112.
  • 5DAI Ji-feng, HE Kai-ming, SUN Jian, et al. Convolutional feature masking for joint object and stuff sgementation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015,510-516.
  • 6Schulz H, Behnke S. Learning object-class segmentation with convolutional neural networks[A]. Proc. of In 11th European Symposium on Artificial Neural Networks (ES- ANN)[C].2012,357-363.
  • 7Jonathan Long, Evan Shelhamer, Darrell Trevon, et al Fully Convolutional networks for semantic segmentation[A]. Proc. of IEEE Conference on Computer Vision and Pattern Recognition[C]. 2015,867-870.
  • 8Clement Farabet, Camille Couprie. Scene parsing with multiscale feature learning, purity trees, and optimal cov- ers[A]. Proc. of International Conference on Machine Learning[C]. 2012,345-351.
  • 9Clement Farabet,Camille,Couprie Najman Laurent,et al Learning hierarchical features for scene labeling[J]. IEEE Trasnsactions on Pattern Analysis and Machine Intelli- gence,2013,35(8):1915-1929.
  • 10Farabet C, Martini B, Corda B, et al. Neuflow: A runtime reconfigurabie dataflow processor for vision[A]. Proc. of the Fifth IEEE Workshop on Embedded Computer Vision. IEEE[C]. 2011,109-116.

共引文献128

同被引文献44

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部