期刊文献+

基于逐步回归分析和BP_Adaboost算法的危险驾驶行为辨识 被引量:4

Identification of Dangerous Driving Behavior on Stepwise Regression Analysis and BP_adaboost Multi-classification Algorithm
原文传递
导出
摘要 为准确辨识车辆在行驶过程中可能出现的异常加减速,压线行驶,右侧超车驾驶行为,以便于及时给予驾驶员信息反馈和安全预警,使车辆保持安全的运行状态.首先通过虚拟驾驶仿真实验平台,采集驾驶行为的48种车辆运行数据对实验数据进行预处理,获得实验样本1492组;其次利用逐步回归分析对原始数据进行降维处理,并选取其中的最优回归模型获得特征参数;将提取的特征参数数据输入到BP_Adaboost多分类网络中,训练BP_Adaboost多分类网络,对上述驾驶行为进行识别;最后该模型与BP神经网络进行识别结果对比分析.结果表明模型识别率相较于BP神经网络提高了8.81%,达到92.93%,能进行更加有效的安全预警. In order to recognize abnormal acceleration and deceleration,line pressing,overtaking on the right side and give the driver Information feedback and safety early warning in time and keep the vehicle in a safe running state.Firstly,48 kinds of drivers driving behavior data and 1492 sets of experimental samples were gathered by driving simulation experiments,the experimental data were pretreated.Secondly,using stepwise regression analysis to reduce the dimension of the original data and selecting the optimal regression model to obtain the characteristic parameters.The the characteristic parameters were input in a BP_Adaboost multi-classification identification model.BP-Adaboost multi-classification identification network was trained,and an identification model was built for driving behavior.Finally,The model is compared with stepwise regression analysis and BP neural network combination model.The results show that the recognition rate of this model is 8.81% higher than that of BP neural network,reaching 92.93% and the model is more effective in early safely warning.
作者 陈慈 张敬磊 王云 盖姣云 CHEN Ci;ZHANG Jing-lei;WANG Yun;GAI Jiao-yun(School of Transportation and Vehicle Engineering, Shangdong University of Technology, Zibo 255000, China)
出处 《数学的实践与认识》 北大核心 2019年第14期200-207,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(61573009) 山东省自然科学基金(ZR2017LF015) 山东省高等学校科技计划(J15LB07)
关键词 智能交通 辨识 BP_Adaboost多分类 逐步回归分析 驾驶行为 intelligent transportation identification BP_Adaboost multi-classification stepwise regression analysis driving behavior
  • 相关文献

参考文献4

二级参考文献20

  • 1史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71. 被引量:49
  • 2宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 3韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:95
  • 4王晓原,张敬磊,张开旺,吴磊.基于非参数样条拟合的交通流预测方法研究[J].计算机工程与应用,2006,42(26):218-220. 被引量:5
  • 5Brian L. Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321.
  • 6孙强.基于人工神经网络的汽车声品质评价与应用研究[D].长春:吉林大学仪器科学与电气工程学院,2011.
  • 7GENUIT K. The sound quality of vehicle interior noise., a challenge for the NVH engineers[J].Ve- hicle Noise and Vibration, 2004, 1(1):158-168.
  • 8SANG-KWON L. Objective evaluation of interior sound quality in passenger cars during acceleration [J]. Journal of Sound and Vibration, 2008, 310 (5) :149-168.
  • 9SAHIN Y, IKBALK E. Sound quality analysis of cars using hybrid neural networks[J].SimulationModeling Practice and Theory, 2008, 16 (4): 410- 418.
  • 10MENG X P, ZHANG H G, TAN W Y. A hybrid method of GA and BP for short term economic dis- patch of hydrothermal power systems[J]. Mathe- matics and Computers in Simulation, 2000, 51 ( 4 ) :341-348.

共引文献55

同被引文献21

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部