摘要
结合传统光学成像系统的性能评价方法,在数字全息自适应光学系统中利用点全息图的自相关函数来评价系统的成像性能。受白噪声的自相关函数近似为狄拉克函数的启发,通过增加点全息图的随机性,使其自相关函数接近狄拉克函数,以提高数字全息自适应光学系统的空间分辨率。提出一种使用随机相位板来增加点全息图的随机性,进而提高数字全息自适应光学系统成像分辨率的方法。对该方法进行数值模拟,研究随机相位板像素个数和随机相位均方差对系统成像分辨率的影响,并在实验室内搭建实验光路对该方法进行实验验证。实验结果表明,使用随机相位板能够有效提高数字全息自适应光学系统的成像分辨率。
Based on the performance evaluation method of traditional imaging optical systems, this study reveals that the autocorrelation function of the point hologram can be used to evaluate the imaging performance of incoherent digital holographic adaptive optics(IDHAO) system. Inspired by the fact that the autocorrelation function of the ideal white noise function is approximately a Dirac δ function, we propose that increasing the randomness of the point hologram can make its autocorrelation function close to the Dirac δ function and improve the imaging resolution of the IDHAO system. Accordingly, a practical method which introduces a random phase plate into the IDHAO system, is proposed and implemented to increase the randomness of the point hologram. The proposed method is evaluated through numerical simulations and effects of the pixel number and the standard deviation of phase in the random phase plate on the imaging resolution of the IDHAO system are investigated. Finally, an optical experiment is performed in the laboratory to evaluate the proposed method and experimental results demonstrate that the random phase plate can effectively improve the IDHAO system′s imaging resolution.
作者
李顺
王地
陆彦婷
Li Shun;Wang Di;Lu Yanting(Nanjing Institute of Astronomical Optics & Technology , National Astronomical Observatories ,Chinese Academy of Sciences , Nanjing, Jiangsu 210042, China;Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences , Nanjing , Jiangsu 210042, China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2019年第7期276-283,共8页
Chinese Journal of Lasers
基金
国家自然科学基金(11573047),国家自然科学基金青年科学基金(11703060,11803058)
中国科学院南京天文光学技术研究所青年人才专项经费(Y015)
关键词
全息
非相干数字全息
计算光学
分辨率
随机相位板
holography
incoherent digital holography
computational optics
resolution
random phase plate