期刊文献+

高表面粗糙度银纳米线的分形研究和SERS效应 被引量:4

Fractal Study and SERS Effect of Silver Nanowires with High Surface Roughness
原文传递
导出
摘要 为了获得分布均匀、有序排列、可重复性高的表面增强拉曼散射基底(SERS),选取银离子导体RbAg4I5薄膜,结合真空热蒸镀工艺和固态离子学方法在外加电流作用下制备出高表面粗糙度的银纳米线。同时,选取罗丹明6G(R6G)溶液作为探针分子,研究高表面粗糙度银纳米线作为SERS基底时的表面增强拉曼特性。实验结果表明:制备得到的银纳米线在宏观上呈现为树枝状,在微观上呈现为有序排列,并且其纳米结构的分形维数为1.59;采用银纳米线作为SERS基底时,能够检测到R6G溶液的浓度低至10^-17 mol/L。制备的高表面粗糙度和有序密集排列的银纳米线SERS基底在环境科学等领域具有潜在的应用前景。 Herein, silver nanowires with high surface roughness are prepared via vacuum thermal evaporation and a solid-state ionics method. The nanowires are assembled into silver conductor RbAg4I5 films under the imposed current intensity, obtaining surface-enhanced Raman scattering(SERS) substrates with highly uniform, well ordered, and high-repeatability. The surface enhanced Raman characteristics of the silver-nanowire substrates with high surface roughness are detected using Rhodamine 6 G(R6 G) probe molecules in aqueous solution. The experimental results show that the prepared silver nanowires are branch-shaped and orderly arranged in the macro and micro structures, respectively;the fractal dimension of the silver nanostructure is 1.59. The method detects molar R6 G concentration as low as 10^-17 mol/L when the silver nanowires are used as SERS substrates. The prepared silver nanowires with orderly dense arrangement and high surface roughness confirm its potential applicability in environmental sciences and other fields.
作者 江恒泽 徐大鹏 康维刚 张一帆 陈建 Jiang Hengze;Xu Dapeng;Kang Weigang;Zhang Yifan;Chen Jian(School of Materials Science and Chemical Engineering,Xi'an Technological University,Xi'an,Shaanxi 710021,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第7期274-280,共7页 Acta Optica Sinica
基金 国家自然科学基金(11504284)
关键词 材料 高表面粗糙度 固态离子学方法 SERS基底 分形结构 materials high surface roughness solid-state ionics method surface-enhanced Raman scattering substrate fractal structure
  • 相关文献

参考文献2

二级参考文献20

  • 1刘惠玉,陈东,高继宁,唐芳琼,任湘菱.贵金属纳米材料的液相合成及其表面等离子体共振性质应用[J].化学进展,2006,18(7):889-896. 被引量:7
  • 2Graf C, Van B A. Metallodielectric Colloidal core-shell particles for photonic applications[J]. Langmuir, 2002, 18(2): 524-534.
  • 3Sershen S R, West C S L, Halas N J. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery [J]. Journal of Biomedical Materials Rasearch, 2000, 51(3): 293-298.
  • 4Hirsch L R, Jackson J B, Lee A, et al.. A whole blood immunoassay using gold nanoshells[J]. Anal Chem, 2003, 75(10): 2377-2381.
  • 5Jensen L, Aikens C M, Schatz G C. Electronic structure methods for studying surface-enhanced Raman scattering[J]. Chemical Society Reviews, 2008, 37(5): 1061-1073.
  • 6Otto A. The‘chemical’(electronic) contribution to surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2005, 36 (6): 497-509.
  • 7Pallavicini P, Chirico G, Collini M, et al.. Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant[J]. Chem Commun, 2011, 47(4): 1315-1317.
  • 8Yang C, Zhang C, Li H M, et al.. Localized surface plasmon resonances caused by Ag nanoparticles on siN for solar cell applications[J]. Journal of the Korean Physical Society, 2010, 56(5):1488-1491.
  • 9Langhammer B, Yuan Z. Zoric I, et al.. Plasmonic properties of supported Pt and Pd nanostructures[J]. Nano Lett, 2006, 6 (4): 833-838.
  • 10Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride[J]. The Journal of Physical Chemistry B, 2003, 107(24): 5723-5727.

共引文献6

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部