期刊文献+

深度学习在医学图像配准上的研究进展与挑战 被引量:15

Research progress and challenges of deep learning in medical image registration
原文传递
导出
摘要 随着影像引导手术和放射治疗的发展,临床对医学图像配准研究的需求更强烈,带来的挑战也更大。最近几年,深度学习,特别是深度卷积神经网络,在医学图像处理方面取得了优异的成绩,在医学图像配准上的研究发展迅速。本文按技术方法分类总结了基于深度学习的医学图像配准的国内外研究进展,包括了基于优化策略的相似性估计、直接估计医学图像配准的变换参数等。然后分析了深度学习方法在医学图像配准上的挑战,并提出了可能的解决办法和研究方向。 With the development of image-guided surgery and radiotherapy, the demand for medical image registration is stronger and the challenge is greater. In recent years, deep learning, especially deep convolution neural networks, has made excellent achievements in medical image processing, and its research in registration has developed rapidly. In this paper, the research progress of medical image registration based on deep learning at home and abroad is reviewed according to the category of technical methods, which include similarity measurement with an iterative optimization strategy, direct estimation of transform parameters, etc. Then, the challenge of deep learning in medical image registration is analyzed, and the possible solutions and open research are proposed.
作者 邹茂扬 杨昊 潘光晖(综述) 钟勇(审校) ZOU Maoyang;YANG Hao;PAN Guanghui;ZHONG Yong(Chengdu University of Information Technology, Chengdu 610225, P.R.China;Chengdu Institute of Computer Application, University of Chinese Academy of Sciences, Chengdu 610041, P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2019年第4期677-683,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金(61806029) 四川省科技厅应用基础研究(重点)(2017JY0011)
关键词 医学图像配准 深度学习 卷积神经网络 全卷积网络 medical image registration deep learning convolutional neural networks fully convolutional networks
  • 相关文献

参考文献3

二级参考文献101

  • 1Genomes Project C, Auton A, Brooks L D, etal. A global reference for human genetic variation. Nature, 2015, 526(7571): 68-74.
  • 2Consortium E P. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 2004, 306(5696): 636-640.
  • 3Chadwick L H. The NIH roadmap epigenomics program data resource. Epigenomics, 2012, 4(3): 317-324.
  • 4Duan Q, Flyrm C, Niepel M, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Research, 2014, 42(Web Server issue): W449-460.
  • 5Barrett T, Wilhite S E, Ledoux P, et al. NCBI GEO: archive for fimctional genomics data sets update. Nucleic Acids Research, 2013, 41(Database issue): D991-995.
  • 6Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemporary Oncalogy, 2015, 19(1A): A68-77.
  • 7Qin J, Li Y, Cai Z, et d. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418): 55-60.
  • 8Mardis E R. The impact of next-generation sequencing technalogy on genetics. Trends in Genetics: TIG, 2008, 24(3): 133-141.
  • 9May M. Life science technalogies: Big bialogical impacts from big data. Science, 2014, 344(6189): 1298-1300.
  • 10Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science (New York, NY), 2006, 313(5786): 504-507.

共引文献166

同被引文献91

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部