期刊文献+

基于支持向量机的微博电影评论情感分析——以《流浪地球》为例 被引量:2

下载PDF
导出
摘要 本文使用词向量与支持向量机组合的方式去学习《流浪地球》微博评论数据中的情感信息。其中,使用无监督的Word2vec模型将数据训练成词向量,词向量将取代人工提取的特征,并且使用支持向量机模型自动学习词向量中的情感分类,最后统计分析电影热议话题点以及观众对这些话题点的情感倾向。
出处 《现代电影技术》 2019年第8期41-45,共5页 Advanced Motion Picture Technology
基金 中国传媒大学中央高校基本科研业务费专项资金资助(No.JG190062)
  • 相关文献

参考文献7

二级参考文献108

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:92
  • 2Gamon M. Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th Interna- tional Conference on Computational Linguistics. Geneva, Switzerland: Association for Computational Linguistics, 2004. 841-847.
  • 3Kim S M, Hovy E. Automatic identification of pro and con reasons in online reviews. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics, 2006. 483-490.
  • 4Zhao J, Liu K, Wang G. Adding redundant features for CRFs-based sentence sentiment classification. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Hawaii, USA: Association for Computational Linguistics, 2008. 117-126.
  • 5Hu M, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA: ACM. 2004. 168-177.
  • 6Kim S M, Hovy E. Automatic detection of opinion bearing words and sentences. In: Proceedings of the 2nd International Joint Conference on Natural Language Processing. Jeju Island, Korea: Springer, 2005. 61-66.
  • 7Yu H, Hatzivassiloglou V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Sapporo, Japan: Association for Computational Linguistics, 2003. 129-136.
  • 8Wu F Y. The potts model. Reviews of Modern Physics, 1982, 54(1): 235-268.
  • 9Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Barcelona, Spain: Association for Computational Linguistics, 2004. 271-278.
  • 10McDonald R, Hannan K, Neylon T, Wells M, Reynar J. Structured models for fine-to-coarse sentiment analysis. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007. 432-439.

共引文献421

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部