期刊文献+

基于优化的Inception ResNet A模块与Gradient Boosting的人群计数方法 被引量:8

A Method of Crowd Counting Based on Improved Inception-ResNet-A Module with Gradient Boosting
下载PDF
导出
摘要 针对人群计数问题,基于优化Inception-ResNet-A模块,使用集成学习中的Gradient Boosting方法提出了一种可用于稀疏人群和密集人群的人群计数方法,并给出此方法实现的具体细节.通过在三个公开数据集和真实场景(含光照和视角变化)中进行测试,检验了该方法对于光照、人群密度、视角等变化的鲁棒性.实验结果表明,该方法对于以上变化具有较强的鲁棒性,并且相比于之前的人群计数方法在准确性和稳定性方面具有更好的性能. To count the pedestrians in the scenarios with the sparse or dense crowd, a network based on the improved Inception-ResNet-A module is proposed, which is trained with the gradient boosting method of ensemble learning, and the details of the proposed method are given. Besides, a dataset collected in a real scenario, which contains illumination and camera view changes, and other three public datasets are used to evaluate the robustness of the proposed method in terms of illumination, population density, and camera view changes. The experimental results show that the proposed method is robust to the aforementioned changes. In addition, the proposed method favorably outperforms the state-of-the-art approaches in terms of accuracy and stability.
作者 郭瑞琴 陈雄杰 骆炜 符长虹 GUO Ruiqin;CHEN Xiongjie;LUO Wei;FU Changhong(School of Mechanical Engineering, Tongji University, Shanghai 201804, China;Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart 70569, Germany)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期1216-1224,共9页 Journal of Tongji University:Natural Science
基金 中央高校基本科研业务费专项资金(22120180009)
关键词 人群计数 优化Inception-ResNet-A模块 GRADIENT BOOSTING 多尺度特征 感知野 crowd counting improved Inception-ResNet-A module gradient boosting multi-scale features receptive field
  • 相关文献

参考文献3

二级参考文献29

  • 1Dafermos S,Nagurney A.Sensitivity analysis for the asymmetric network equilibrium problem[J].Mathematical Programming,1984,28(2):174.
  • 2Sheffi Y.Urban transportation networks[M].New Jersey:Prentice-Hall,1985.
  • 3Magnanti T L,Perakis G.A unifying geometric solution framework and complexity analysis for variational inequalities[J].Mathematical Programming,1995,12(3):327.
  • 4Merchant D K,Nemhauser G L.A model and an algorithm for the dynamic traffic assignment problems[J].Transportation Science,1978,12:183.
  • 5Carey M.Optimal time-varying flows on congested networks[J].Operations Research,1987,35(1):58.
  • 6Birge J R,Ho J K.Optimal flows in stochastic dynamic networks with congestion[J].Operations Research,1993,41(1):203.
  • 7Ziliaskopoulos A K.A linear programming model for the single destination system optimum dynamic traffic assignment problem[J].Transportation Science,2000,34(2):37.
  • 8Johansson M V,Heldt T,Johansson P.The effect of attitudes and personality traits on mode choice[J].Transportation Research:Part A,2006,40(6):507.
  • 9Domarchi C,Tudela A,Gonzalez A.Effect of attitude,habit and affective appraisal on mode choice:An application to university workers[J].Transportation Science,2008,35:585.
  • 10Choo S,Mokhtrian P L.What type of vehicle do people drive?The role of attitude and lifestyle in influencing vehicle type choice[J].Transportation Research:Part A,2004,38:201.

共引文献22

同被引文献45

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部