摘要
利用分数次积分在L^p空间的性质,证明了当核函数Ω(x,z)满足一定条件时,带变量核的分数次积分算子与Lipschitz函数b生成的交换子T^b Ω,a是从L^p,k(ω^p,ω^q)到L^q,kq/p(ω^q)的有界算子,从而推广了以往非变量核的相关结果。
Using the properties of fractional integral in Lpspace,it is proved that when Ω(x,z) meets certain conditions, the commutator T^b Ω, a generated by fractional integral operator T Ω,a with variable kernel and Lipschitz function b is a bounded operator from L^p,k(ω^p ,ω^q) to L^q,kq/p (ω^q), which generalizes the previous results of non - variable kernel.
作者
卢爱红
杨旭升
LU Aihong;YANG Xusheng(Lanzhou Vocational and Technical College, Lanzhou 730070 China;School of Education, Lanzhou University of Arts and Sciences, Lanzhou 730000 , China)
出处
《青海大学学报(自然科学版)》
2019年第4期98-102,共5页
Journal of Qinghai University(Natural Science)
基金
国家自然科学基金项目(11661051)
甘肃省高等学校科研项目(2018A-248)