期刊文献+

移动感知器网络中基于随机游走和协作关系的任务分发算法 被引量:3

Task Distribution Algorithm Based on Random Walk and Cooperative Relationship in Mobile Sensor Networks
下载PDF
导出
摘要 关于移动感知器网络中感知任务的分发问题,目前学术界已经有了诸多相关研究.然而,这些研究很少涉及到多个智能体协作完成复杂感知任务问题.针对这种情况,首先,通过分析移动感知器网络的结构特征、智能体相互之间、以及智能体和感知任务之间的关系,本文提出了智能体之间协作关系强度和智能体对感知任务适应度两个概念,并讨论了二者对于移动感知器网络中感知任务动态分发的作用.其次,在上述概念的基础上,将二者融合为偏好因子,提出了基于随机游走和协作关系的任务分发算法(TDCR,Task Distribution With Cooperative Relationship),通过该算法达到提高任务分发效率的目的.最后,将TDCR与Personal Rank算法(PR)、HITS算法对比分析,表明所提出的算法TDCR在任务分发效率和准确度等性能指标上有较好的提升. There have been many studies on the distribution of sensing tasks in mobile sensor networks.However,these studies rarely involve the problem that many agents in a mobile sensor network cooperate to perform complex sensing tasks.In order to address this challenge,first,we combined the structural characteristics of mobile sensor networks,the relationship between agents,and the relationship between agents and sensing tasks.Then we proposed the strength of cooperation between agents and the fitness of agents to sensing tasks,and discussed their roles in the dynamic distribution of sensing tasks in mobile sensor networks.Second,based on the above concepts,the two were unified as preference factors.In order to achieve the goal of improving task distribution efficiency,a task distribution algorithm based on random walk and cooperative relationship was proposed.At last,the comparison with the Personal Rank(PR)algorithm and HITS algorithm shows that the proposed algorithm has superiority in task distribution efficiency and accuracy.
作者 陶冶 张书奎 张力 龙浩 王进 TAO Ye;ZHANG Shu-kui;ZHANG Li;LONG Hao;WANG Jin(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China;Xuzhou College of Industrial Technology,Xuzhou,Jiangsu 221140,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第8期1601-1611,共11页 Acta Electronica Sinica
基金 预研基金(No.61403120402) 国家自然科学基金(No.61672370) 苏州市重点产业技术创新前瞻性应用研究项目(No.SYG201730) 江苏省高校自然科学基金(No.16KJB520040) 徐州市应用基础研究计划项目(No.KC17074) 江苏省青蓝工程人才培养计划 苏州市融合通信重点实验室(No.SKLCC2013XX) 软件新技术与产业化协同创新中心部分资助
关键词 移动感知器网络 智能体 感知任务 二分图 任务分发 mobile sensor network agent sensing task bipartite graph task distribution
  • 相关文献

参考文献6

二级参考文献132

  • 1李兵,王浩,李增扬,何克清,余敦辉.基于复杂网络的软件复杂性度量研究[J].电子学报,2006,34(B12):2371-2375. 被引量:38
  • 2刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41.
  • 3Borodin A, Roberts G O, Rosenthal J S, Tsaparas P. Link analysis ranking: Algorithms, theory, and experiments. ACM Transactions on Internet Technology, 2005, 5 (1) 231-297.
  • 4Du Y, Shi Y, Zhao X. Using spam farm to boost PageRank// Proceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web. New York, USA, 2007: 29-36.
  • 5Henzinger M R, Motwani R, Silverstein C. Challenges in web search engines. Special Interest Group on Information Retrieval Form, 2002, 3"/(2) 11 22.
  • 6Zhou ]3, Pei J. Link spare target detection using page farms. ACM Transactions on Knowledge Discovery from Data, 2009, 3(3): 13.
  • 7Gy6ngyi Z, Garcia-Molina H. Link spam alliances// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway, 2005:517-528.
  • 8Becchetti L, Castillo C, Donato D. Link analysis for web spare detection. ACM Transactions on the Web (TWEB), 2008, 2(1): 2.
  • 9Abernethy J, Chapelle O, Castillo C. Graph regularization methods for web spam detection. Machine Learning, 2010, 81(2) : 207-225.
  • 10Leon-Suematsu Y I, Inui K, Kurohashi S. Web spam detection by exploring densely connected subgraphs//Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. Washington, USA, 2011:124 129.

共引文献43

同被引文献31

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部