期刊文献+

基于简约凸壳的一类模糊支持向量机 被引量:3

One-Class Fuzzy Support Vector Machine Based on Reduced Convex Hull
下载PDF
导出
摘要 为解决传统一类支持向量机对噪声数据敏感和不适用于大规模分类等问题,提出了用于大规模噪声环境的基于简约凸壳的一类模糊支持向量机(OC-FSVM-RCH).OC-FSVM-RCH根据简约凸壳的定义在核空间得到代表正常类数据几何特征的样本,然后基于改进的模糊支持向量域描述算法,使得正常类数据包含在最小超球内,异常数据与超球间隔最大化.OC-FSVM-RCH剔除正常类数据轮廓边缘处的噪声,同时对数据内部的噪声不敏感.实验结果表明了所提算法在性能和训练时间上取得了良好的效果. The traditional one-class support vector machines are sensitive to noise data and not suitable for large-scale classification.In order to solve the problem,a novel one-class fuzzy support vector machine based on reduced convex hull called OC-FSVM-RCH is proposed for large-scale noise data classification.According to the reduced convex hull,OC-FSVM-RCH obtains the samples representing the geometric characteristics of normal class data in the kernel space.Then OC-FSVM-RCH improves the fuzzy support vector domain description algorithm,in which normal class data is enclosed in the smallest hypersphere,and the margin between abnormal class data and hypersphere is maximized.OC-FSVM-RCH can eliminate the noise at the edge of normal data contour and is insensitive to the noise inside the normal data.Experimental results show that the proposed algorithm achieves good results in terms of performance and training time.
作者 周国华 卢剑炜 顾晓清 殷新春 ZHOU Guo-hua;LU Jian-wei;GU Xiao-qing;YIN Xin-chun(Department of Information Engineering,Changzhou Institute of Industry Technology,Changzhou,Jiangsu 213164,China;College of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225127,China;School of Information Science and Engineering,Changzhou University,Changzhou,Jiangsu 213164,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第8期1708-1716,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61472343,No.61806026) 江苏省自然科学基金(No.BK20180956) 院创新团队项目(No.YB201813101005)
关键词 模糊支持向量机 一类分类 简约凸壳 噪声数据 one-class fuzzy support vector machine reduced convex hull noise data
  • 相关文献

参考文献3

二级参考文献24

  • 1http://wang.ist.psu.edu/docs/related.shtml.
  • 2邓乃杨,田英杰.数据挖掘的新方法-支持向量机[M].北京:科学出版社,2004.
  • 3Pan S J L,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[A].Proceedings of the 23rd International Conference on Artificial Intelligence [C].California,USA,2008.677-682.
  • 4Pan S J L,Ni X.Cross-domain sentiment classification via spectral feature alignment [A].Proceedings of the 19th International Conference on World Wide Web[C].New York:ACM,2010.751-760.
  • 5Zhuang F Z,Luo P,Xiong H,Xiong Y H.Cross-domain learning from multiple sources:a concensus regularization perspective[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(12):1664-1678.
  • 6Sun S.Multi-view Laplacian support vector machines[A].Lecture Notes in Computer Science[C].Germany:Springer,2011.209-222.
  • 7Xu Z,Sun S.Multi-view transfer learning with Adaboost[A].Proceedings of the 23rd International Conference Tools with Artificial Intelligence[C].New York,2011.399-402.
  • 8Ling X,Dai W,Xue G R,et al.Spectral domain-transfer learning[A].Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2008.488-496.
  • 9Gao J,Fan W,Sun Y,et al.Heterogeneous source consensus learning via decision propagation and negotiation[A].Proceedings of the 15rd International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2009.339-348.
  • 10Deng Z H,Fu-Lai Chung,Wang S T.FRSDE:fast reduced set density estimator using minimal enclosing ball approximation[J].Pattern Recognition,2008,(41):1363-1372.

共引文献14

同被引文献17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部