摘要
压缩感知可以利用稀疏性实现单幅超分辨成像,但需要满足两个条件:一是信号是稀疏或变换后稀疏,二是测量矩阵的有限等距性质,可以等价为评价矩阵互相关度。矩阵的互相关度影响着压缩感知的成像分辨能力。将压缩感知应用到超分辨荧光显微镜中,利用投影梯度稀疏重构算法(GPSR)实现单帧超分辨显微成像。为了进一步提高成像分辨率,通过梯度迭代方法优化测量矩阵从而降低矩阵互相关度。还建立了矩阵互相关度与分辨率关系,这对进一步提高荧光显微成像分辨率并实现快速超分辨荧光显微镜有着重大意义。
Gradient Projection for Sparse Reconstruction (GPSR) algorithm is used to achieve single frame wide field super- resolution imaging.To further improve the imaging resolution the measurement matrix is optimized and the mutual correlation is reduced by the method of gradient-based iteration.In this paper,the relationship between the mutual correlation and the imaging resolution is also established,which of great significance for further improving the resolution of fluorescence microscopy and realizing fast super-resolution fluorescence microscopy.
出处
《工业控制计算机》
2019年第8期143-144,146,共3页
Industrial Control Computer
基金
国家重点研发计划项目(2016YFC0100600)
关键词
压缩感知
荧光显微成像
超分辨
互相关度
compressed sensing
fluorescence microscopy imaging
super resolution
mutual correlation