期刊文献+

天然气管道加热用浸没燃烧换热器设计及应用分析 被引量:3

Design and application analysis of submerged combustion heat exchanger for natural gas pipeline heating
下载PDF
导出
摘要 浸没燃烧技术应用于天然气管道加热较为新颖,该技术核心在于换热器的设计。介绍了浸没燃烧换热器的设计方法,设计出200kW 浸没燃烧换热器并在北京某门站供暖期内投入使用,以解决调压器的冻堵问题。利用实测数据计算管内、管外对流换热系数,通过数据拟合计算得到额定设计工况下的实际综合传热系数,进而对设计综合传热系数进行修正。计算结果表明,设计综合传热系数的修正系数为1.56。再通过实际管外对流换热系数反算得到水浴最大流速值,拟合得到功率与水浴最大流速的关系式,利用加热装置在120kW 稳定运行时的实测数据进行验证,水浴最大流速计算结果误差率为6.67%,可以为相同类型的浸没燃烧换热器设计提供参考。 Submerged combustion technology is a novel technology for natural gas pipeline heating.The core of the technology lies in the design of the heat exchanger.The design method of submerged combustion heat exchanger is introduced in this paper.The 200 kW submerged combustion heat exchanger is designed and put into use during the heating period of a gate station in Beijing.The measured data were used to calculate heat transfer coefficient of the convection inside and outside the tube,and the actual comprehensive heat transfer coefficient under rated design conditions was obtained through data fitting calculation,and then the comprehensive heat transfer coefficient of the design was modified.The calculation results showed that the modified comprehensive heat transfer coefficient of the design was 1.56.Through actual heat transfer coefficient of convection outside tube calculated by maximum velocity of water bath outside the tube,fitting for the relation between the power and the maximum velocity of water bath,using of heating equipment in the 120 kW and stable operation of the measured data validation,water bath maximum velocity calculation error rate is 6.67%.This method can provide a reference for the same type of submerged combustion heat exchanger design.
作者 王浩 史永征 刘蓉 菅海瑞 Wang Hao;Shi Yongzheng;Liu Rong;Jian Hairui(School of Environmental and Energy Engineering,Beijing University of Civil Engineering and Architecture,Beijing,China)
出处 《石油与天然气化工》 CAS CSCD 北大核心 2019年第4期50-56,共7页 Chemical engineering of oil & gas
基金 北京市科技计划课题“高中压调压站冻堵、冻胀对安全运行影响分析及应对措施研究”(D151100005515002)
关键词 换热器 管内、管外对流换热系数 实际综合传热系数 设计综合传热系数 管外水浴 最大流速 heat exchanger heat transfer coefficient of convection inside and outside the tube actual comprehensive heat transfer coefficient designed comprehensive heat transfer coefficient maximum velocity of water bath outside the tube
  • 相关文献

参考文献3

二级参考文献20

  • 1陈维汉.一种考虑综合性能优化的换热器热设计方法(一)[J].化工装备技术,2006,27(4):35-43. 被引量:6
  • 2傅忠诚,艾效逸,王天飞,等.天然气燃烧与节能环保新技术[M].北京:中国建筑工业出版社,2007:253.
  • 3顺安忠.液化天然气技术手册[M].北京:机械工业出版社,2010:497-498.
  • 4CHO J H,MATHUR G,KOTZOT H,et al. Limitations in LNG vaporization process selection[C]. Houston:2005 AIChE Spring National Meeting- Conference Proceedings,2005:2059-2072.
  • 5DAVID H. Operating experiences with an integrated selective catalytic reduction system(SCR) operating with submerged combustion vaporizers(SCV)at a North American base load LNG vaporization facility[C]. Houston:2005 AIChE Spring National Meeting- Conference Proceedings,2005:1975-1983.
  • 6IKEDA Y,HIMOTO N,KATO G. Advanced design of submerged combustion vaporizer for low emission operation[C]. Tokyo:2006 AIChE Spring National Meeting,2006:23-27.
  • 7TAGLIAFICO G,VALSUANI F,TAGLIAFICO L A. Liquefied natural gas submerged combustion vaporization facilities:process integration with power conversion units[J]. International Journal of Energy Research,2013,37(1):80–92.
  • 8XU S,CHENG Q,ZHUANG L,et al. LNG vaporizers using various refrigerants as intermediate fluid:Comparison of the required heat transfer area[J]. Journal of Natural Gas Science and Engineering,2015(25):1-9.
  • 9MENG H Y,WANG S Z,ZHOU L,et al. Numerical simulation of heat transfer of liquefied natural gas in horizontal circular tubes under supercritical pressure[J]. Advanced Materials Research,2014(6):438-441.
  • 10ZUKAUSKAS A. Heat transfer from tubes in crossflow[J]. Advances in Heat Transfer,1987(18):87-159.

共引文献12

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部