期刊文献+

基于运行状态识别的无人机航迹预测 被引量:3

Unmanned Aerial Vehicle Trajectory Prediction Based on Operating State Recognition
下载PDF
导出
摘要 无人机航迹预测对于无人机冲突检测、任务规划及异常管控至关重要。在很多情况下难以为无人机这种复杂系统建立精确的物理模型,给基于模型的滤波方法带来一定难度。为解决上述问题,提出一种基于运行状态识别的无人机高斯过程-无味卡尔曼滤波的混合估计方法。首先,利用运行状态识别机制将无人机运行数据分为不同数据段,以确定无人机实时状态并提高预测模型的适应性;然后,根据不同的运行状态,从航迹数据中学习高斯过程递归模型,将其作为无味卡尔曼滤波器的状态转移方程,以实现更高的预测精度;最后,利用动作捕捉系统采集的真实无人机运行数据验证了所提出方法的有效性,利用均方误差检验了方法的精确度。 Unmanned aerial vehicle(UAV)trajectory prediction is critical for UAV collision detection,mission planning,and anomaly management.In many cases,it is difficult to establish an accurate physical model for a complex system such as a drone,which brings difficulty to the model-based filtering method.In order to solve the above problems,a hybrid estimation method based on running state recognition for Gaussian process-unscented Kalman filter was proposed.The method uses the running state recognition mechanism was used to divide the drone operation data into different data segments to determine the real-time status of the drone and improve the adaptability of the prediction model.Then,according to different operating states,the Gaussian process recursive model is learned from the track data and used as the state transition equation of the unscented Kalman filter to achieve higher prediction accuracy.Finally,the effectiveness of the proposed method is verified by the real drone operation data collected by the motion capture system.The accuracy of the method is verified by the mean square error.
作者 赵嶷飞 杨明泽 ZHAO Yi-fei;YANG Ming-ze(College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China)
出处 《科学技术与工程》 北大核心 2019年第23期304-309,共6页 Science Technology and Engineering
基金 国家重点研发计划(2016YFB0502400)资助
关键词 无人机 航迹预测 无味卡尔曼滤波 动作捕捉 高斯过程回归 unmanned aerial vehicle trajectory prediction unscented Kalman filter motion capture Gaussian process regression
  • 相关文献

参考文献8

二级参考文献61

  • 1刘齐宏,李天德,周志斌,易彬,唐常杰,刘齐巍.基于RFID与基因表达式编程的经济统计时序挖掘[J].四川大学学报(工程科学版),2008,40(5):121-124. 被引量:5
  • 2肖靖,孙涛.新一代民用航空运输系统需要更加灵活高效的空中交通管理系统[J].空中交通管理,2006(1):7-10. 被引量:3
  • 3吴益明,卢京潮,魏莉莉,潘文平.无人机遥控遥测数据的实时处理研究[J].计算机测量与控制,2006,14(5):681-682. 被引量:20
  • 4王大海.末端区域4D导引的水平轨迹计算方法[J].飞行力学,1996,14(3):27-33. 被引量:7
  • 5SLATTERY R A. Terminal area trajectory synthesis for air traffic control automation [ C ]// Proceedings of the American Control Conference. Seattle : IEEE Computer Society Press, 1995 : 1206-1210.
  • 6SLATTERY R, ZHAO Y. Trajectory synthesis for air traffic automation [ J ]. Journal of Guidance, Control, and Dynamics [J]. 1997, 20(2): 232-238.
  • 7BOLENDER M A, SLATER G L. Departure trajectory synthesis and the intercept problem[ C ] //AIAA Guidance Navigation and Control Conference. New Orleans: National Aeronautics and Space Administration, 1997: 444-454.
  • 8Eurocontrol Experimental Centre. User manual for the base of aircraft data (BADA) revision 3.6 [ OL/DB ]. http ://www. eurocontrol. int/eec/public/standard_page/ACE_bada_documents_36. html. 2008-12-15.
  • 9[1]Boeing Company.Boeing Air Traffic Management-revolutionary concept that enable air traffic growth while cutting delays[EB/OL].[2006-09-14].http://www.boing.com/atm.
  • 10[2]STOREY J,WATT A.Investigation into factors affecting the performance of along-track position prediction algorithm for commercial aircraft,Eurocontrol Experimental Centre Report 240[R].1991.

共引文献179

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部