摘要
针对群优化算法对变分模态分解所需模态数和二次惩罚项参数寻优效率较低的问题,提出了快速局部均值经验模态分解的信号预处理方法.对预处理后的模态分量根据相似系数准则进行模态数预估,同时利用多评价指标选择二次惩罚参数.针对VMD对故障信号中存在的固有振动高频带分解效果较差的问题,利用自相关能量函数实现降噪和减小高频带的影响.通过仿真实验和实测轴承故障数据分析,并与群优化算法选择参数以及中心频率相近选取模态数的VMD分解效果相比,该方法能有效提取故障信号的特征频率.
To solve the problems existing in the swarm optimization algorithm,such as the low efficiency in searching the modal number and quadratic penalty parameters for the variational mode decomposition,a signal pretreatment method was proposed for fast local mean empirical mode decomposition.The number of modal was estimated according to the similarity coefficient criterion,and the penalty parameter was selected with the multi-evaluation factors.In order to reduce the influences of high natural frequencies band on results of VMD,the signal was reconstructed based on autocorrelation energy function to reduce the influence of noise and high frequency band.Simulation test and real data analysis of bearing fault were carried out to compare the parameter selection effect with swarm optimization algorithm and VMD modal selection effect based on similar center frequency.The results show that this method can extract early weak fault characteristic frequencies of bearings effectively.
作者
张栋良
李帅位
黄昕宇
陈璞
ZHANG Dong-liang;LI Shuai-wei;HUANG Xin-yu;CHEN Pu(School of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第8期846-851,共6页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金资助项目(61503237)
上海市自然科学基金资助项目(15ZR1418300)
上海市科研计划资助项目(18020500900)
关键词
模态数
经验模态分解
变分模态分解
参数优化
固有振动频带
the number of modal
empirical mode decomposition
variational mode decomposition
parameters optimization
natural frequencies band