摘要
针对笔芯球珠表面缺陷检测识别问题,设计并实现了基于机器视觉的笔芯球珠表面缺陷检测系统。笔芯球珠在球面展开机构作用下,通过图像采集模块获取5张可以完全覆盖整个球面的图像。通过对每幅图像进行缺陷图像提取后,采用基于轮廓角点匹配的方法实现对每幅图像中缺陷图像的拼接;基于提取的有效特征组合通过KNN分类算法对完整的缺陷图像进行缺陷识别。试验结果表明,该方法能够对笔芯球珠表面缺陷进行精确有效的检测与识别。
To detect the surface defects of refill ball, this paper designs a detecting system for its surface defects based on machine vision. Under the effect of the spherical unfloding module, five images which can entirely cover the whole ball surface are obtained by image acquisition module. The defect image extracted from the 5 images is mosaiced based on contour. Then, based on the combination of the extracted effective features, the whole defect image is identified by KNN classification algorithm. The experimental result shows that the method can be used to detect and recognize the ball surface defects accurately and effectively.
作者
刘凯
王伟华
张勇
朱天明
LIU Kai;WANG Weihua;ZHANG Yong;ZHU Tianming(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;Yangzhou Zhenyong Industrial Technology Development Co., Ltd., Yangzhou 225002, China)
出处
《机械制造与自动化》
2019年第4期156-158,共3页
Machine Building & Automation
基金
江苏省自然科学基金(BK20151470)
关键词
笔芯球珠
机器视觉
表面缺陷
图像处理
refills ball
machine vision
surface defects
image processing