摘要
本文在L1、L2语言产出中的自我修正相关研究基础之上,基于Levelt的分类模型,以"第五届全国口译大赛"东北大区赛数据为研究语料,重新建立了英汉交替传译过程中的自我修正分类模型,并对其分布特点进行了描述。数据分析结果表明:只有建立更符合英汉口译特点的分类模型,才能将自我修正更好地应用于口译过程中的监控机制、认知负载等研究;学生译员A语译语产出中的"监控倾向"比L1语言产出向输出源发生明显偏移,而主要由输入源诱因导致的隐性修正并未对口译质量评价产生明显的负面影响;认知负载增加时,在注意力资源有限的情况下,学生译员会优先监控输入源诱因。
In light of previous research on self-repair in the field of L1 and L2 language production, this paper takes data from the Northeastern regional semi-final of The 5 th All China Interpreting Contest, and re-categorizes selfrepairs in English-Chinese consecutive interpreting based on Levelt’s classification(1983). The analysis of selfrepairs in the data shows that: Only by establishing a categorization that caters for the English-Chinese language pair can self-repairs be better tapped in research on monitoring mechanisms and cognitive efforts in the E-C interpreting process;the "monitor bias" in student interpreters’ A language production is skewed towards output, and covert repairs incited mainly by input are not found to have significant negative effect on interpreting assessment;when attention resources are strained due to increased cognitive load, student interpreters opt to monitor input over output.
作者
张微微
罗卫华
洪艺琳
ZHANG Wei-wei;LUO Wei-hua;HONG Yi-lin(Dalian Maritime University, Dalian 116026, China)
出处
《大连大学学报》
2019年第3期119-127,共9页
Journal of Dalian University
基金
辽宁省教育厅人文社会科学研究一般项目(W2015064)
辽宁省本科教改立项一般项目
大连海事大学2015年度“中央高校基本科研业务费专项资金资助”青年骨干教师基金项目(3132016081)
关键词
自我修正
英汉交替传译
实证研究
学生译员
self-repair
English-Chinese consecutive interpreting
empirical research
student interpreter