摘要
本文基于高维稀疏线性模型,研究弹性约束估计(elastic net, EN)的相关显著性检验问题,在弹性约束估计的解路径上建立Cov-EN检验.为了获取该检验的理论结果,本文回顾KKT (KarushKuhn-Tucker)条件,通过Lars算法计算得到弹性约束估计的解路径上每个节点的解析表达式,证明该检验在一般数据下渐近收敛于参数为1的指数分布.本文的数值模拟和实证分析进一步阐述Cov-EN检验的特点与作用,并与Lasso的协方差检验进行比较.
This paper considers the significance test for the elastic net in high dimensional sparse linear regression models. A test statistic called Cov-EN test statistic is proposed which is based on the knots of the elastic net solution path. It is shown to have an Exp(1) asymptotic distribution with general predictors. To prepare for the test statistic, we review KKT conditions and compute each knot of Lars algorithm for the elastic net solution path. Simulations and real examples given in this paper illustrate the performance of the Cov-EN test statistic and compare the results with the significance test for the Lasso.
作者
杨玥含
吴岚
Yuehan Yang;Lan Wu
出处
《中国科学:数学》
CSCD
北大核心
2019年第8期1119-1138,共20页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11671059)资助项目
关键词
显著性检验
模型选择
协方差检验
significance test
model selection
covariance test statistic