期刊文献+

大众性问答社区答案质量排序方法研究 被引量:9

Ranking Answer Quality of Popular Q&A Community
原文传递
导出
摘要 【目的】针对大众性问答社区答案质量参差不齐的现状,对答案质量排序方法进行探讨。【方法】依据信息接受模型,从感知价值角度构建答案质量排序初始指标体系;采用K-Medoids聚类算法对初始指标进行离散化,同时利用粗糙集理论对初始指标进行约简并赋予权值,进而修正指标体系;运用加权灰色关联分析计算答案的加权灰色关联度,以产生排序结果。【结果】针对"知乎"6类话题下6个问题的2 297条相关数据进行实验分析,排序靠前的答案通常采用图文结合的表达方式、答案所含信息量高,且回答者社区参与度较高,从而答案的质量较高。【局限】数据规模需要扩大,对排序方法的评价还可以优化。【结论】73名"知乎"用户对原始排序与本研究排序进行满意度评价,结果表明本文方法具有优越性。 [Objective] This paper proposes a new method to rank the quality of answers from a popular Q&A community in China.[Methods] First,based on the information acceptance model,we established initial quality indicators for the answer’s perceived values.Then,we discretized these indicators with the K-Medoids clustering algorithm.Third,we reduced and weighted the indictors with the help of rough set theory.Finally,we generated the formal rankings with the weighted grey correlation analysis.[Results] We evaluated the proposed method with 2 297 answers for six different types of questions from the Q&A website of "Zhihu".We found that the answers ranked higher generally included textual message with images.These answers were also more informative than others and involved active members of the Q&A community.[Limitations] The size of our dataset needs to be expanded,and the evaluation method of the proposed model could be optimized.[Conclusions] The proposed method is an effective way to rank the quality of answers from the Q&A community.
作者 易明 张婷婷 Yi Ming;Zhang Tingting(School of Information Management,Central China Normal University,Wuhan 430079,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第6期12-20,共9页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金项目“基于人类动力学的社交网络信息交流行为研究”(项目编号:16BTQ076)的研究成果之一
关键词 大众性问答社区 答案质量排序 感知价值 粗糙集理论 加权灰色关联分析 Common Q&A Community Answer Quality Ranking Perceived Value Rough Set Theory Weighted Grey Correlation Analysis
  • 相关文献

参考文献12

二级参考文献189

共引文献188

同被引文献124

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部