摘要
风电是重要的清洁可再生能源,将其引入智能电网中对节能减排有着重要的意义.为降低大规模风电不确定性给电网调度带来的影响,提出一种基于随机模型预测控制的风电与传统机组协调调度方法.考虑了部分传统机组需要人工调度而无法频繁、连续操作的情况,并引入可调负荷以增加系统可调度能力.构建基于混合整数二次规划(MIQP)的风电调度目标函数,以及包括机组最大可调节次数、最小运行/停机时间、可调度负荷总能量需求一致性、风电切负荷比例等约束.提出两阶段场景缩减方法以实现典型场景的快速筛选.通过与传统开环调度方法的性能对比表明所提出方法的可行性与有效性,并在此基础上进一步分析机组启停次数和可调度负荷对系统运行的影响.
Wind power is an important clean and renewable energy. Integrating it into smart grid is significant to the energy conversion and emission reduction. In order to reduce the negative impact introduced by uncertainties and randomness of large scale wind power integration, a stochastic model predictive control(SMPC) based optimization and scheduling approach is proposed to coordinate to the wind power and traditional fossil generators. The discrete generation regulation constraints of some traditional generators without the automatic generation control(AGC) function are considered, and schedulable loads are introduced to make the system more flexible. A mixed integer quadratic programming(MIQP) based energy management model is constructed, and the regulation frequency constraints, minimum up/down time constraints and discrete output constraints are all considered. A two-stage scenario cutting method is proposed to efficiently choose typical scenarios. Experimental results show that the approach proposed is flexible and efficient by comparing with the traditional scheduling approach. Furthermore, the impact of start-up/shut-down times and schedulable loads is discussed.
作者
王锐
张彦
王冬
张涛
刘亚杰
WANG Rui;ZHANG Yan;WANG Dong;ZHANG Tao;LIU Ya-jie(College of System Engineering,NationalUniversity of Defense Technology,Changsha 410073,China;Department of National Defense Economy,Army Logistics University of PLA,Chongqing 400041,China)
出处
《控制与决策》
EI
CSCD
北大核心
2019年第8期1616-1625,共10页
Control and Decision
基金
国家自然科学基金项目(61773390,71571187)
湖南省自然科学杰出青年基金项目(2017JJ1001)
湖南省湖湘青年英才计划项目(2018RS3081)
国防科技大学科研计划-重点项目(ZK18-02-09)
关键词
风力发电
随机模型预测控制
离散化约束
混合整数二次规划
wind power
stochastic model predictive control
discretized constraints
mixed integer quadratic programming