期刊文献+

基于事件驱动的二次凸优化问题分布式优化算法 被引量:5

Distributed event-triggered algorithm for quadratic convex optimization problem
原文传递
导出
摘要 针对多智能体系统中等式约束下的二次凸优化问题,给出一种事件驱动机制下的分布式优化算法.该算法可以降低每个智能体控制协议的更新频率以及智能体之间的通信负担.基于图论和李雅普诺夫函数方法给出两种不同的事件触发条件,其中第2种事件触发条件不需要拉普拉斯矩阵的最大特征根的信息,可实现算法全分布式实施.两种事件触发条件均可实现算法渐近收敛到优化值,避免智能体控制协议的连续更新以及智能体之间的连续通信,同时保证每个智能体相邻事件触发时刻的时间间隔大于0,避免持续事件触发.将所提出的算法应用于Matlab仿真环境中进行仿真验证,仿真结果验证了所提出算法的有效性. This paper investigates the quadratic convex optimization problem with equality constraint for multi-agent systems(MASs). In order to reduce the controllers’ update frequency and the communication burden among agents,a distributed event-triggered optimization algorithm is proposed. Based on the graph theorem and Lyapunov function method, two different event-triggered conditions are designed, which guarantee that agents can asymptotically converge to their optimal values. Especially, the second event-triggered condition dose not require the information of the largest eigenvalue of the Laplacian matrix, and thus the algorithm can be implemented in a fully distributed way. The continuous update of controllers and the continuous communication among agents are not required. Meanwhile, the interval of any two contiguous event trigger instants of each agent is more than zero, and continuous event triggering is avoided. Finally,the proposed algorithm is verified in the Matlab simulation environment, and the result of numerical simulation shows the effectiveness of the proposed algorithm.
作者 赵中原 陈刚 ZHAO Zhong-yuan;CHEN Gang(College of Automation,Chongqing University,Chongqing 400044,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第8期1635-1644,共10页 Control and Decision
基金 国家自然科学基金项目(61673077,61273108) 重庆市基础与前沿研究计划项目(CSTC2016jcyjA0361) 中央高校基本科研业务费项目(106112017CDJQJ178827)
关键词 分布式优化 多智能体系统 事件驱动 一致性 分布式算法 二次凸优化 无向图 distributed optimization multi-agent system event-triggered consensus distributed algorithm quadratic convex optimization undirected graph
  • 相关文献

参考文献3

二级参考文献18

  • 1吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制[J].控制与决策,2007,22(11):1241-1244. 被引量:22
  • 2WOOD A J,WOLLENBERG B F. Power generation,operation, and control[M]. New York,USA:Knovel,1996:97-103.
  • 3ANDREA R D,DULLERUD G E. Distributed control design for spatially interconnected systems[J]. IEEE Transactions on Auto- matic Control ,2003,48 (3) : 1478-1495.
  • 4HUANG A Q,CROW M L,HEYDT G T,et al. The Future Re- newable Electric Energy Delivery and Management(FREEDM) system:the energy intemet[J]. Proceedings of IEEE,2011,99(1 ) : 133-148.
  • 5BERTSEKAS D P,TSITSIKLIS J N. Parallel and distributed computation : numercial methods[M]. Englewood Cliffs, N J, USA : Prentice Hall, 1989 : 159-162.
  • 6CHOW M Y,ZHANG Z. Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid [J]. IEEE Transactions on Power Systems, 2012,27 (4) : 1761-1768.
  • 7KAR S,HUG G. Distributed robust economic dispatch in power systems:a consensus+innovations approach[C]//IEEE Power and Energy Society General Meeting. San Diego,California,USA:IEEE, 2012:1-8.
  • 8OLFATI-SABER R,FAX J A,MURRY R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of IEEE, 2007,95 ( 1 ) : 215-233.
  • 9ZHANG Z,CHOW M Y. The leader election criterion for de- centralized economic dispatch using incremental cast consensus algorithm[C]//The 37th Annual Conference of IEEE Industrial Electronics Society (IECON). Melbourne, Vienna, Austria : IEEE, 2011:2730-2735.
  • 10ZHANG Z,YING X C,CHOW M Y. Decentralizing the eco-nomic dispatch problem using a two-level incremental cost consensus algorithm in a smart grid environment[C]//JThe North American Power Symposium. Boston, MA, USA: IEEE, 2011 : 1-7.

共引文献60

同被引文献25

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部