摘要
综合考虑配送成本、生鲜产品新鲜度、碳排放和客户需求不确定等因素,建立配送路径规划多目标优化模型。基于鲁棒优化处理不确定问题的方法,针对离散需求隶属于椭球不确定集情况,优化配送路径规划多目标模型,并应用主要目标法和果蝇算法对模型进行求解。算例验证所建模型及算法具有良好的鲁棒性,能有效抑制需求为不确定情况下所带来的扰动。对于完善生鲜电商企业配送路径规划模型和配送网络优化方法提供了重要的理论支持和实践思路。
Considering the distribution cost, freshness of fresh products, carbon emissions and customer demand uncertainty and other factors, a multi-objective optimization model of distribution path planning is established. Based on the robust optimization method for dealing with uncertain problems, the multi-objective model of distribution routing planning is optimized for the situation that the discrete demand belongs to the uncertainty set of ellipsoid. The model is solved by using the main target method and fruit fly algorithm. It is proved that the model and algorithm are robust and can effectively suppress the disturbance caused by the uncertainty of the demand. This paper provides an important theoretical basis and practical ideas for improving the distribution route planning model and distribution network optimization method.
作者
张倩
熊英
何明珂
张浩
Zhang Qian;Xiong Ying;He Mingke;Zhang Hao(Beijing Technology and Business University, Beijing 10004& China;State Grid Beijing Logistic Supply Company, State Grid Beijing Electric Power Company, Beijing 100054, China;Beijing Wuzi University, Beijing 101149, China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2019年第8期1582-1590,共9页
Journal of System Simulation
基金
2018年首都流通业研究基地内设课题(JD-ZD-2018-001)
北京市哲学社会科学项目(17GLB013)
关键词
路径规划
不确定需求
生鲜电商
鲁棒优化
果蝇算法
vehicle routing problem
uncertain demand
fresh electronic commerce
robust optimization
fruit fly optimization algorithm