期刊文献+

Ultrasonic flaw detection of discontinuous defects in magnesium alloy materials 被引量:2

Ultrasonic flaw detection of discontinuous defects in magnesium alloy materials
下载PDF
导出
摘要 Phased array ultrasonic testing, an effective ultrasonic testing(UT) technology, has been widely used in steel inspection because of its high accuracy, sensitivity, and efficiency. However, as its application in as-cast magnesium alloys has just begun, more research is needed. Considering the important role of the gain compensation in quantifying defects in magnesium alloys by ultrasonic phased array technology, the effects of microstructure, the position, size, and overlap of defects, and boundary distance(distance from the defect position to the side surface of the test casting) on gain compensation of as-cast AZ80 and AZ31 magnesium alloys were studied. Results show the gain compensation increases with the increase of grain size. There is a strict linear positive correlation between gain compensation and defect depth, but such relationship no longer exists due to the defects overlap, orientation and boundary distance. In addition, there is a strict linear negative correlation between the gain compensation and defect size. Phased array ultrasonic testing, an effective ultrasonic testing(UT) technology, has been widely used in steel inspection because of its high accuracy, sensitivity, and efficiency. However, as its application in as-cast magnesium alloys has just begun, more research is needed. Considering the important role of the gain compensation in quantifying defects in magnesium alloys by ultrasonic phased array technology, the effects of microstructure, the position, size, and overlap of defects, and boundary distance(distance from the defect position to the side surface of the test casting) on gain compensation of as-cast AZ80 and AZ31 magnesium alloys were studied. Results show the gain compensation increases with the increase of grain size. There is a strict linear positive correlation between gain compensation and defect depth, but such relationship no longer exists due to the defects overlap, orientation and boundary distance. In addition, there is a strict linear negative correlation between the gain compensation and defect size.
出处 《China Foundry》 SCIE 2019年第4期256-261,共6页 中国铸造(英文版)
基金 financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0305504) the National Natural Science Foundation of China(Grant No.51771043)
关键词 MAGNESIUM alloy ULTRASONIC phased array DEFECT detection GAIN COMPENSATION magnesium alloy ultrasonic phased array defect detection gain compensation
  • 相关文献

参考文献8

二级参考文献43

共引文献108

同被引文献35

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部