期刊文献+

A new distributed feature selection technique for classifying gene expression data

原文传递
导出
摘要 Classification of gene expression data is a pivotal research area that plays a substantial role in diagnosis and prediction of diseases. Generally, feature selection is one of the extensively used techniques in data mining approaches, especially in classification. Gene expression data are usually composed of dozens of samples characterized by thousands of genes. This increases the dimensionality coupled with the existence of irrelevant and redundant features. Accordingly, the selection of informative genes (features) becomes difficult, which badly affects the gene classification accuracy. In this paper, we consider the feature selection for classifying gene expression microarray datasets. The goal is to detect the most possibly cancer-related genes in a distributed manner, which helps in effectively classifying the samples. Initially, the available huge amount of considered features are subdivided and distributed among several processors. Then, a new filter selection method based on a fuzzy inference system is applied to each subset of the dataset. Finally, all the resulted features are ranked, then a wrapper-based selection method is applied. Experimental results showed that our proposed feature selection technique performs better than other techniques since it produces lower time latency and improves classification performance.
出处 《International Journal of Biomathematics》 SCIE 2019年第4期79-109,共31页 生物数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部