期刊文献+

基于超声技术的室内定位设计 被引量:1

Interior Positioning Design Based on Ultrasonic Technology
下载PDF
导出
摘要 本设计以STC89LE52AD单片机和超声换能器为核心,采用时间到达法,移动节点的超声波接收模块和射频发射模块以及固定节点的超声波发射模块和射频信号接收模块。利用三点决定一个平面原理设定三个固定超声波发射点。用射频信号的发射和接收时间作为计时点,根据固定节点超声波发射和移动节点接收到超声波之间的时间差确定固定节点和移动节点之间的间距,实现对移动节点的定位功能。 The core of this design is STC89LE52AD single chip microcomputer and ultrasonic transducer.Adoption of Time arrival method,Ultrasonic receiving module and RF emission module for mobile nodes and Ultrasonic emission module and RF signal receiving module for fixed nodes are used.Using three points to determine a plane principle to set three ultrasonic emission points The launch and reception time of the RF signal is used as the timing point,The spacing between the fixed node and the moving node is determined according to the time difference between the ultrasonic emission and the receiving, So as to realize the positioning of mobile nodes.
作者 徐昆毓 XU Kunyu(North China University of Water Resources and Electric Power, Zhengzhou 450011, China)
出处 《技术与市场》 2019年第9期10-12,共3页 Technology and Market
关键词 单片机 超声波 射频 定位 移动节点 Microcontroller unit(MCU) Ultrasonic Radial frequency Positioning Mobile nodes
  • 相关文献

参考文献5

二级参考文献27

  • 1郭宗河,郑进凤.电磁波测距三角高程测量公式误差的研究[J].测绘通报,2004(7):12-13. 被引量:39
  • 2景旭文,李家宝,葛鸿翰.超声测距的研究[J].华东船舶工业学院学报,1994,8(1):90-94. 被引量:12
  • 3张正禄,黎明,邓勇,罗长林,张松林.等距等高电磁波测距三角高程测量及精度分析[J].现代测绘,2005,28(1):3-4. 被引量:14
  • 4王秀芳,王江,杨向东,王磊,吴志海.相位激光测距技术研究概述[J].激光杂志,2006,27(2):4-5. 被引量:43
  • 5单承刚,戴学丰,刘树东,崔登志.嵌入式Linux下多路超声波测距系统设计[J].微计算机信息,2007,23(17):248-250. 被引量:2
  • 6Dai Huan,Zhu Zhaomin,Gu Xiaofeng.Multi-target indoor localization and tracking on video monitoring system in a wireless sensor networks[J].Journal of Network and Computer Application,2013,36(1):228-234.
  • 7Lin Tsungnan,Fang Shihhau,Tseng Weihan,et al.A group-discrimination-based access point selection for WLAN fingerprinting localization[J].IEEE Transactions on Vehicular Technology,2014,63(8):3967-3975.
  • 8Bahl P,Padmanabhan V N.RADAR:An in-building RF-based user location and tracking system[C]∥Proceeding of the IEEE INFOCOM,New York:IEEE Computer and Communications Society,2000:775-784.
  • 9Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 10Chen Yushi,Lin Zhouhan,Zhao Xing,et al.Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2094-2107.

共引文献28

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部