摘要
二氧化钛(TiO2)纳米粒子是一种禁带宽度较大的n型半导体材料,其性能优良,用途广泛,具有稳定性好、无毒、低成本等特点,常应用于太阳能电池和光催化等领域。但TiO2由于其带隙较宽的特点,使其仅能吸收波长小于380nm的紫外光,对太阳光的利用率不足5%,并且光生电子-空穴易于复合,降低了光量子效率,使得TiO2纳米材料的实际应用受到了阻碍。目前,越来越多的科学家通过控制TiO2的形貌、晶型等手段来调控TiO2禁带使其吸收光谱向可见光区域扩展并且降低光生电子-空穴对复合率。研究人员对于制备性能优异的TiO2纳米粒子投入了巨大的精力,使这一课题不断科学化、完善化。本文主要综述了近年来不同形貌TiO2光催化剂研究进程,同时展望了未来的研究和发展方向。
Titanium dioxide (TiO2) nanoparticles are n-type semiconductor materials with large bandgap width, which have excellent performance, wide application, good stability, non-toxic, low cost and other characteristics. TiO2 nanoparticles are often used in fields such as solar cells and photocatalysis. However, due to its wide band gap, TiO2 can only absorb ultraviolet light whose wavelength is less than 380nm, and therefore its utilization rate of sunlight is less than 5%. At the same time, the photogenerated electrons and holes are easy to recombined, and the photo quantum efficiency is low, which hinders the practical application of TiO2 photocatalytic materials. At present, more and more scientists regulate TiO2 band gap by controlling the morphology and crystal shape of TiO2 to expand the absorption spectrum to the visible region and reduce the photogenerated electron-hole pair recombination rate. How to prepare TiO2 nanoparticles with excellent properties has become one of the active topics in material research, which has important scientific significance. In this paper, the research progress of TiO2 photocatalyst with different morphology in recent years has been reviewed, and the future research and development strategy are predicted.
作者
王竞
郭玉
王祉诺
李孝通
刘世民
姜薇薇
刘超前
王华林
王楠
丁万昱
WANG Jing;GUO Yu;WANG Zhinuo;LI Xiaotong;LIU Shimin;JIANG Weiwei;LIU Chaoqian;WANG Hualin;WANG Nan;DING Wanyu(School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China)
出处
《中国陶瓷工业》
CAS
2019年第4期18-23,共6页
China Ceramic Industry
基金
辽宁省自然科学基金(2015020182)
辽宁省教育厅计划项目(JDL2017008)
关键词
TIO2
光催化
不同形貌
综述
纳米粒子
制备
应用
研究进展
TiO2
photocatalytic
different shape
review
nanoparticles
preparation
application
research