期刊文献+

基于奇异值谱熵复杂度的CRDM滚轮磨损程度识别研究 被引量:2

Roller Wear Degree Recognition of Control Rod Drive Mechanism Based on the Complexity of Singular Spectrum Entropy
原文传递
导出
摘要 针对反应堆控制棒驱动机构(CRDM)中的滚轮丝杠运动副磨损状态难以评估的问题,引入复杂度概念,并基于奇异值谱熵构建复杂度指标,实现了滚轮磨损程度的识别。对观测时间序列进行相空间重构并计算奇异值,再结合信息熵的概念得到奇异值谱熵。经仿真、分析和验证,结果表明,该复杂度指标对于信号的不确定性较为敏感,可以有效的反映出不同磨损状态下信号频域的变化,进而判断出滚轮的磨损程度;滚轮随着运行时间增加,振动信号的高频成分显著增加,低频成分变化很小。因此,应用奇异值谱熵作为评价指标可以有效地识别滚轮的磨损状态。 Aiming at the problem of the wear condition monitoring of the roller in the control rod drive mechanism in reactors, the concept of complexity is introduced. As one of the complexity, the singular spectrum entropy is used to recognize the wear condition. After the reconstruction phase space of the observed data, the singular is calculated. Combined with the concept of entropy of information, the singular spectrum entropy is defined. The singular spectrum entropy is sensitive to the uncertainty of the observed data and shows the change of the components in the frequency domain which is related to the wear condition. By the experiment of the control rod drive mechanism in its whole life, it is found that the high-frequency components increase and the low-frequency components change little, with the running time increasing. The experiment proves that the method of singular spectrum entropy is quite valid in wear condition monitoring and recognition.
作者 张黎明 李琳 洪力阳 杨晓晨 Zhang Liming;Li Lin;Hong Liyang;Yang Xiaochen(College of Nuclear Science and Technology,Navel University of Engineering,Wuhan,430033,China;Wuchang University of Technology,Wuhan,430223,China;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2019年第4期108-112,共5页 Nuclear Power Engineering
基金 中国核动力研究设计院核反应堆系统设计重点实验室基金(LRST2017202) 海军工程大学自然科学基金(20161601)
关键词 控制棒驱动机构(CRDM) 滚轮 奇异值谱熵 复杂度 磨损 Control rod drive mechanism (CRDM) Roller Singular spectrum entropy Complexity, Wear
  • 相关文献

参考文献6

二级参考文献54

  • 1肖方红,阎桂荣,韩宇航.混沌时序相空间重构参数确定的信息论方法[J].物理学报,2005,54(2):550-556. 被引量:45
  • 2谢和平 薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1998..
  • 3何正嘉 訾艳阳 陈雪峰 等.机械故障预示中的若干科学问题.振动与冲击,2010,.
  • 4LOU Jingjun, ZHU Shijian, HE Lin. Application of chaos method to line spectra reduction[J]. Journal of Sound and Vibration,2005, 286:645-652.
  • 5HILBORN R C, DING Mingzhou. Optimal reconstruction space for estimating correlation dimension[J]. International Journal of Bifurcation and Chaos, 1996, 6(2), 377-381.
  • 6FRANCIS C M. Chaotic vibrations [M]. New York: Cornell University, 1987: 191-195.
  • 7TAKENS M. Detecting strange attractors in fluid turbulence[C]//Dynamical Systems and Turbulence, Lecture Notes in Mathematics. Berlin: Springer, 1986.
  • 8RECHESTER A, WHITE R B. Symbolic Kinetic equation for a chaotic attractor[J]. Physics Review Letters A, 1991, 156: 419-424.
  • 9BUZUG Th. , PFISTER G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors[J]. Physical Review A, 1992, 45,(10):7073-7084.
  • 10KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127(2): 48-60.

共引文献53

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部