期刊文献+

自适应加权融合显著性结构张量和LBP的表情识别 被引量:2

Facial Expression Recognition by Adaptive Weighted Fusion of Salient Structural Tensor and LBP
下载PDF
导出
摘要 针对局部二值模式(Local Binary Pattern,LBP)提取纹理特征时忽略了图像的局部结构信息问题,提出一种自适应加权融合显著性结构张量和LBP的表情识别算法。该算法通过对整幅图片进行显著性区域检测得到全局显著图来消除细小的纹理和噪声。在显著图的基础上进一步提取两种显著性纹理特征,根据每种特征信息熵的贡献度来作为特征向量的加权依据。利用支持向量机(Support Vector Machine,SVM)进行表情图像的分类。实验结果表明,自适应加权融合的两种纹理特征能够较好地描述人脸的特征,有效地提高表情识别率。 Aiming at the problem that Local Binary Pattern(LBP)algorithm ignores the local structure information when extracting texture features, a novel expression recognition algorithm by adaptive weighted fusion of salient structure tensor and LBP feature is proposed. The method first eliminates fine textures and noises by detecting the salient regions on the entire image to obtain a global salient map. Second, salient texture features are further extracted based on the salient map.According to the contribution of each feature information entropy, the feature vector is weighted. Finally, the Support Vector Machine(SVM)is used to classify the expression images. The experimental results show that the two texture features of adaptive weighted fusion can better describe the features of human face and effectively improve the expression recognition rate.
作者 董俊兰 张灵 陈云华 DONG Junlan;ZHANG Ling;CHEN Yunhua(School of Computer, Guangdong University of Technology, Guangzhou 510006, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第17期185-190,共6页 Computer Engineering and Applications
基金 广东省交通运输厅科技项目(No.科技-2016-02-030) 广东省自然科学基金(No.2016A030313703,No.2016A030313713) 广东省科技计划项目(No.2016B030305002) 广东省科技计划产学研项目(No.2017B090901005)
关键词 显著图 结构张量特征 局部二值模式(LBP)特征 自适应加权 salient map structure tensor feature Local Binary Pattern(LBP)feature adaptive weighted
  • 相关文献

参考文献4

二级参考文献23

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 3Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 4Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 5Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 8Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 9Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 10Lucey P, Cohn J F, Kanade T, et al. The extended Cohn-Kanade dataset(CKq-) : a complete dataset for ac- tion unit and emotion-specified expression[C]//Com- purer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE, 2010: 94-101.

共引文献140

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部