期刊文献+

特征组合和多模块学习的视网膜血管分割 被引量:3

Retinal Vessel Segmentation Based on Feature Combination and Multimodel Learning
下载PDF
导出
摘要 有监督的学习方法用于视网膜血管分割须以专家手动标记好的视网膜血管为标准,存在训练样本获取困难且训练时间长等不足。针对这些缺点,提出一种基于特征组合的多模块无监督学习方法,提取眼底图像素的不变矩、Hessian矩阵、相位一致性、Gabor小波变换、Candy边缘共18维特征向量,采用多模块k-means方法进行视网膜血管分割。实验结果表明,该方法简单,具有较好的准确度,且时间开销少。 Machine learning requires a manually annotated set of training images for classifying a pixel either as a vessel or a non-vessel in previously unseen image. It’s difficult to obtain the training samples and expensive time. A new unsupervised learning approach based on feature fusion is proposed. Firstly, a set of 18-D discriminative feature vectors, consisting of Hu moment invariants, Hessian, phase congruency, Gabor wavelet transform, Candy edge detector, are extracted for each pixel of the fundus image. Then a matrix based on the feature vectors is divided into multimodel sets, and uses the k -means method to cluster respectively. Finally, the clustering results are combined as output of the retinal vessel segmentation. Experimental results show that the proposed approach has good average accuracy and running time.
作者 陈莉 陈晓云 CHEN Li;CHEN Xiaoyun(School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第17期214-220,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.71273053,No.11571074) 福建省自然科学基金(No.2018J01666)
关键词 视网膜血管分割 特征组合 多模块学习 K-MEANS retina vessel segmentation feature combination multimodel learning k-means
  • 相关文献

参考文献5

二级参考文献52

  • 1Cheng S C. Huang Y M. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images[J]. IEEE Transactions on Information Technology in Biomedicine. 2003. 7(3): 163-170.
  • 2Preet hi M. Vanithamani R. Review of retinal blood vessel detection methods for automated diagnosis of diabetic retinopathy[C] //Proceedings of International Conference on Advances in Engineering. Science and Management. Los Alamitos: IEEE Computer Society Pre". 20]2: 262-265.
  • 3Chaudhuri S. Chatterjee S. Katz N. et al , Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Transactions on Medical Imaging ? .\989. 8 (3): 263-269.
  • 4Fraz M M, Remagnino r. Hoppe A, et al. Blood vessel segmentation methodologies in retinal images-a survey[J]. Computer Methods and Programs in Biomedicine, 2012, 108 (1): 407-433.
  • 5Niemeijer M, StaalJ, van Ginneken B, et al . Comparative study of retinal vessel segmentation methods on a new publicly available database[C] //Proceedings of SPIE. Bellingham: Society of Photo-Optical Instrumentation Engineers, 2004, 5370: 648-656.
  • 6StaalJ, Abramoff M D, Niemeijer M, et al . Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.
  • 7SoaresJ V B, LeandroJ J G, Cesar R M, et al . Retinal vessel segmentation using the 2 -D Gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006,25(9): 1214-1222.
  • 8Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification[J]. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365.
  • 9Osareh A, Shadgar B, Markham R. A computational?intelligence-based approach for detection of exudates in diabetic retinopathy images[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13 (4): 535- 545.
  • 10Lupascu C A, Tegolo D, Trucco E. FABC: retinal vessel segmentation using AdaBoost[J]. "IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5): 1267- 1274.

共引文献77

同被引文献29

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部