期刊文献+

基于精英候选池的蝙蝠算法

Bat algorithm based on elite candidate pool
下载PDF
导出
摘要 针对蝙蝠算法搜索后期容易陷入局部最优,从而导致算法精度不高、停滞等不足,提出了精英候选池策略为每只蝙蝠选取待追随的最优蝙蝠,从而增强了种群的多样性,避免算法过早成熟。在10个Benchmark测试函数中进行仿真实验,实验结果表明,基于候选池的蝙蝠算在在收敛精度和速度上都有较大的提高。 Bat algorithm( BA) has such limitations as low accuracy and stagnation,because it is prone to fall into the local optimum during the late searching period. In order to improve the diversity of population,bat algorithm with elite candidate pool( EBA) is proposed to make each bat select the pursed bat from the elite bats pool. The elite pool method enables the algorithm to avoid successfully premature. Ten Benchmark testing functions have been conducted. The experiment results show that EBA outperforms BA on convergence accuracy and convergence speed on most test functions.
作者 郭京蕾 于田 石泽远 GUO Jinglei;YU Tian;SHI Zeyuan(School of Computer,Central China Normal University,Wuhan 430079,China)
出处 《南昌工程学院学报》 CAS 2019年第4期78-82,共5页 Journal of Nanchang Institute of Technology
基金 国家自然科学基金资助项目(61763019) 国家科技支撑计划(2015BAK33B03)
关键词 蝙蝠算法 收敛精度 候选池 bat algorithm(BA) convergence speed candidate pool
  • 相关文献

参考文献6

二级参考文献63

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 2孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 3KARABOGA D. An idea based on honey bee swarm for numerical op- timization, Technical Report-TR06 [ R ]. Kayseri : Erciyes University, 2005.
  • 4KARABOGA D,AKAY B. A survey:algorithms simulating bee swarm intelligence [ J ]. Artificial Intelligence Review, 2009,31 ( 1- 4 ) : 61 - 85.
  • 5KRISHNANAND K N, GHOSE D. Detection of multiple source loca- tions using a glowworm metaphor with applications to collective robo- tics[ C ]//Proc of IEEE Swarm Intelligence Symposium. Piseataway: IEEE Computer Society,2005 : 84- 91.
  • 6YANG X S. nATURE Inspired metaheufistic algorithms [ M ]. Frome. UK : Lnniver Press. 2008 : 83- 96.
  • 7YANG Xin-she. Nature-inspired metaheuristic algorithms [ M ]. 2nd ed. Frome,UK:Luniver Press,2010: 97-104.
  • 8YANG Xin-she. A new metaheufistic bat-inspired algorithm [ M ]// GONZLEZ J R, PELTA D A. Nature Inspired Cooperative Strategies for Optimization. Berlin : Springer, 2010:65-74.
  • 9SHI Yu-hui, EBERHART R. A modified particle swarm optimizer [ C ]//Proc of IEEE Intemational Conference on Evolutionary Compu- tation. Anchorage : IEEE Press, 1998:69-73.
  • 10TASGETREN M F, SEVKLI M, LIANG Y C, et al. Particle swarm optimization algorithm for permutation flowshop sequencing problerri [ C ]//Lecture Notes in Computer Science, vol 3172. 2004 : 382- 389.

共引文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部