期刊文献+

海南省农业气象自动站土壤水分分布特征 被引量:2

Soil Moisture Distribution Characteristics of Automatic Agricultural Meteorological Observatory in Hainan Province
下载PDF
导出
摘要 利用海南省18个农业气象自动观测站土壤水分状况观测资料,分析了海南省农业气象自动站土壤水分分布特征。结果表明,土壤质地分为黏土、黏壤土和砂土三大类,以黏土、黏壤土为主;凋萎系数的大小与土壤质地、测定作物品种有关,凋萎系数从小到大顺序排列为细砂土、粉砂土、粉壤土、黏壤土、黏土。不同土壤质地间土壤容重差别不大,土壤容重随土壤深度加深而略有增加;黏土田间持水量最大,其次为黏壤土、砂黏土、粉砂土、粉壤土,田间持水量最少的是细砂土。 The automatic observation data of the soil moisture from 18 automatic agricultural meteorological observatories in Hainan Province were used to analyze the soil moisture distribution characteristics in Hainan Province.The results showed that the soil texture in Hainan Province was divided into three categories(clay,clay loam and sand soil),and the main categories were clay and clay loam.The wilting coefficient was related with the soil texture and the determined crop varieties.The wilting coefficients arranged from small to large were fine sand soil,silty soil,silt loam,clay loam,and clay.There was little difference of soil bulk density among different soil textures,and it increased with the soil layer depth.The value of the field capacity was largest in clay,followed by clay loam,sand clay,silty soil and silt loam,and the smallest was fine sand soil.
作者 陈珍莉 施晨晓 王小洁 羊清雯 CHEN Zhen-li;SHI Chen-xiao;WANG Xiao-jie;YANG Qing-wen(Hainan Meteorological Information Center,Haikou Hainan 570203;Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province)
出处 《现代农业科技》 2019年第16期160-161,共2页 Modern Agricultural Science and Technology
基金 海南省气象局项目“海南省土壤水分数据资料质量控制研究”
关键词 农业气象观测站 土壤水分 分布特征 海南省 automatic agricultural meteorological observatory soil moisture distribution characteristic Hainan Province
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]Mather J R, Feddema J. Hydrologic consequence of increase in trace gases and CO2 in the atmosphere. In: effects of changes in stratospheric ozone and global climate. Climate Change, 1988, 3: 251-271.
  • 2[2]L D贝弗尔等著,周传槐译.土壤物理学.北京:农业出版社,1983.
  • 3[5]Chahine T M. The hydrological cycle and its influence on climate. Nature, 1992, 359: 373-380.
  • 4[6]Trenberth K E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim., 1999, 12:1368-1381.
  • 5[7]Brubaker K L, D Entekhabi, P S Eagleson. Estimation of continental precipitation recycling. J. Clim., 1993, 6:1077-1089.
  • 6[8]Namias J. Surface-atmosphere interactions as fundamental causes of droughts and other climatic fluctuations. Arid Zone Research, 1963, 20: 345-359.
  • 7[9]Manabe S. Climate and ocean circulation: the atmospheric circulation and the hydrology of the earth's surface. Mon.Weather Rev., 1969, 97: 739-774.
  • 8[10]Rowntree P R, J R Bolton. Simulation of the atmospheric response to soil moisture anomalies over Europe. Q. J. R.Met. Soc., 1983, 109: 501-526.
  • 9[11]Yeh T C, R I Wetherald, S Manabe. The effect of soil moisture on the short-term climate and hydrology change: a numerical experiment. Mon. Wea. Rev., 1984, 112: 474-490.
  • 10[12]Xue Y, P J Sellers, J L Kinte et al. A simplified biosphere model for global climate studies. J. Climate, 1991, 4:345-364.

共引文献90

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部