期刊文献+

关联规则在健康文本信息挖掘中的应用 被引量:2

Application of association rules in health text information mining
下载PDF
导出
摘要 随着计算机技术的发展,各个领域中的大多数文献都已数字化。本文主要使用健康文档作为原始数据,通过Web创建的健康数据,利用文本挖掘技术提取关联特征信息。使用Apriori挖掘算法,分析创建事务中的关键字的关联规则,并生成关联关键字。使用TF-C-IDF权重和关联关键字从健康数据中提取关联特征。根据在精度,召回率,F-measure和效率值方面的实验评估表明其性能很高。 With the development of computer technology, most of the literature in various fields has been digitized. This paper mainly uses health documents as source data, through the health data created by the Web, using text mining technology to extract the associated feature information. The Apriori mining algorithm was used to analyze the association rules for the keywords in the created transaction and generate the associated keywords. Association features are extracted from health data using TF-CIDF weights and associated keywords. Experimental evaluations based on accuracy, recall, F-measure and efficiency values indicate high performance.
作者 白玲玲 韩天鹏 BAI Lingling;HAN Tianpeng(Academic Affair Office,Fuyang Party Institute of CCP,Fuyang Anhui 236034,China;School of Computer and Information Engineering,Fuyang Normal University,Fuyang Anhui 236037,China)
出处 《阜阳师范学院学报(自然科学版)》 2019年第3期43-48,共6页 Journal of Fuyang Normal University(Natural Science)
基金 阜阳师范大学自然科学研究项目(2018FSKJ11) 阜阳市党校科研课(FYDXKT201937) 阜阳市规划课题(FSK2018051)资助
关键词 数据挖掘 文本挖掘 关联规则 APRIORI TF-IDF data mining text mining association rules Apriori TF-IDF
  • 相关文献

参考文献6

二级参考文献54

  • 1罗森林,马俊,潘丽敏编著.数据挖掘理论与技术[M].北京:电子工业出版社,2013.
  • 2Ilayaraja M,Meyyappan T.Mining medical data to identify frequent diseases using Apriori algorithm[C]//2013 International Conference on Pattern Recognition,Informatics and Mobile Engineering(PRIME),2013:194-199.
  • 3Kantardzic M.数据挖掘:概念、模型、方法和算法[M].王晓海,吴志刚.译.2版.北京:清华大学出版社,2013:1-13.
  • 4Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases.Proceedings of ACMSIGMOD Conference on Management of Data,1993:207-216.
  • 5Park J S,Chen M S,Yu P S.An effective Hash-based algorithm for mining association rules[C]//Proceedings of ACM SIGMOD International Conference on Management of Data,1995:175-186.
  • 6Prashant V,Mandot M.A comparative analysis of various cluster detection techniques for data mining[C]//2014 International Conference on Electronic Systems,Signal Processing and Computing Technologies,2014:357-361.
  • 7HAN Jiawei, PEI Jian, YIN Yiwen. Mining frequent patterns without candidate generation[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 1-12.
  • 8DONG Jie, HAN Min. BitTableFI: an efficient mining frequent itemsets algorithm[J]. Knowledge-Based Systems, 2007, 20:329-335.
  • 9ZHANG Yan, ZHANG Fan, BAKOS J. Frequent itemset mining on large scale shared memory machines[C]//Proceedings of IEEE International Conference on Cluster Computing.Washington: IEEE Computer Society, 2011: 585-589.
  • 10TRAN A N, DUONG H V, TRUONG T C, et al. Efficient algorithms for mining frequent itemsets with constraint[C]//Proceedings of the 3rd International Conference on Knowledge and Systems Engineering (KSE). Washington: IEEE Computer Society, 2011: 19- 25.

共引文献62

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部