期刊文献+

基于交通信息和模型预测控制的混合动力汽车能量管理策略综述 被引量:15

Review on energy management strategies for hybrid electric vehicles based on traffic information and model predictive control
下载PDF
导出
摘要 在汽车工业飞速发展的今天,由传统内燃机汽车导致的能源消耗和环境污染问题日益严重,无法忽视。基于节能和环保考虑,混合动力汽车成为了汽车行业发展的主要方向。由于存在两个或以上动力源,混合动力汽车不同动力源之间的能量分配直接影响整车的燃油经济性、驾驶性等。因此,能量管理是混合动力汽车设计和开发的关键技术之一。现阶段,混合动力汽车的能量管理技术发展日趋成熟,基于规则和优化算法的能量管理策略有效提升了混合动力汽车的燃油经济性。同时,随着智能交通系统的飞速发展,交通信息广泛应用于混合动力汽车的能量管理,拓宽了能量管理策略的应用范围,使其能够适应多种工况,有力推动了相关领域的发展。本文全面概括了混合动力汽车能量管理策略发展现状,对基于规则和优化算法的混合动力汽车能量管理策略的研究进展及关键问题进行了简单概括,重点总结了基于交通信息应用及模型预测控制的能量管理策略,并对混合动力汽车能量管理策略的未来发展进行了预测。 Energy consumption and environmental pollution caused by internal combustion automobiles are getting worse with the rapid development of automobiles industry.For energy saving and environmental protection,hybrid electric vehicle(HEV)has been fully developed in recent decades.Because HEV has two or more energy sources,energy split between different energy sources,which is called energy management,crucially influences the fuel economy of HEV.Thus,energy management of HEV is one of the key technical issues which severely affecting the design and development of HEV.Rule-based and optimal algorithm based strategies have been widely used in energy management of HEVs.Meanwhile,the development of Intelligent transportation system(ITS)making collecting traffic information like velocity becomes easier which extends the energy management strategies.Now traffic information have been widely used in energy management of HEV and strongly promote the development of related fields.In this article,the state of art on energy management strategies is comprehensively summarized and energy management strategies based on traffic information application and model predictive control are studied.The future development of energy management strategies in HEV is also discussed.
作者 景远 焦晓红 JING Yuan;JIAO Xiaohong(Experimental Education Center,Northeastern University at Qinhuangdao,Qinhuangdao,Hebei 066004,China;School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《燕山大学学报》 CAS 北大核心 2019年第4期319-330,共12页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61573304) 秦皇岛市科学技术研究与发展计划项目(201602A010)
关键词 最优控制 混合动力汽车 能量管理 交通信息 马尔可夫链模型 模型预测控制 optimal control hybrid electric vehicle energy management traffic information Markov chain model model predictive control
  • 相关文献

参考文献18

二级参考文献666

共引文献725

同被引文献139

引证文献15

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部