期刊文献+

基于改进CKF算法的一类有色噪声污染的线性观测系统的状态估计 被引量:1

State Estimation of a Class of Linear Observation Systems Contaminated by Colored Noise Based on Modified CKF Algorithm
下载PDF
导出
摘要 针对系统受有色噪声污染时容积卡尔曼滤波(CKF)算法滤波精度下降甚至发散的问题,提出了基于量测信息增广的改进CKF算法.改进算法采用量测信息增广方式,将有色噪声白噪声化,再将白化后的噪声和系统噪声去相关化,从而解决了一类有色噪声污染的线性观测系统的状态估计问题.将本文算法应用于生物地球化学仿真模型,对生物圈植被碳含量进行动态估计,仿真结果表明,改进算法具有较高的精度和鲁棒性. Cubature Kalman filter (CKF) has good accuracy and numerical stability when dealing with the nonlinear filtering estimation. Especially, for high-dimensional nonlinear system, CKF can avoid the problem encountered in unscented Kalman filter (UKF), i.e., the weight of the center sampling point may be less than 0, which will make the covariance matrix be non-definite and cause the filter to diverge and abort. Nevertheless, CKF still has some defects. For example, its filtering accuracy may decrease or even diverge when the system is polluted by colored noise. Aiming at these shortcomings, this paper proposes a modified CKF (MCKF) algorithm based on measurement information. By utilizing the augmenting measurement information to whiten the colored noise and de-correlate the noise and system noise, the obtained equivalent system can meet the requirement of CKF algorithm and obtain the state estimation of the linear observation system with colored noise pollution. Finally, the proposed algorithm is applied to the biogeochemical model. In the actual geosphere, the carbon content of vegetation and soil can be briefly described as a biogeochemical model, which characterizes the response and the feedback process of terrestrial ecosystems to climate change. During the simulation, the carbon content of soil is observed to estimate the dynamical carbon content of the biosphere vegetation. It is shown from the simulation results that the modified algorithm can attain high accuracy and strong robustness.
作者 齐莉莉 刘济 QI Lili;LIU Ji(Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education,East China University of Science and Technology, Shanghai 200237, China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期600-605,共6页 Journal of East China University of Science and Technology
基金 上海市北斗导航与位置服务重点实验室开放课题基金
关键词 有色量测噪声 容积卡尔曼滤波 量测信息增广 colored measurement noise CKF augmented measurement information
  • 相关文献

参考文献4

二级参考文献30

  • 1熊伟 ,张晶炜 ,何友 .修正的概率数据互联算法[J].海军航空工程学院学报,2004,19(3):309-311. 被引量:11
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 3熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:11
  • 4Bar-shalom Y and Fortmann T E.Tracking and Data Association.New York,Academic press,1988,Chapter 3.
  • 5Arthur G O,et al..Decentralized Estimation and Control for Multisensor Systems.CRC Press,1998,Chapter 2.
  • 6Zhou D H and Frank P M.Strong tracking filtering of nonlin-ear time-varying stochastic systems with coloured noise:Application to parameter estimation and empirical robust-nessanalysis.Int.J.Control,1996,65(2):295-307.
  • 7Julier S J and Uhlmann J K.A new extension of the Kalman filter to nonlinear systems.SPIE,1997,3068:182~193.
  • 8Julier S J and Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimators.IEEE Trans.on AC,2000,45(3):477~482.
  • 9Merwe R and E A Wan.Efficient derivative-free Kalman filters for online learning,In European Symposium on Artificial Neural Networks (ESANN),Bruges,Belgium,2001:205~210.
  • 10Joseph J and LaViola Jr.A comparison of unscented and extended Kalman filtering for estimating quaternion motion.In the Proceedings of the 2003 American Control Conference,Colorado,2003:2435~2440.

共引文献57

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部