摘要
本文研究了具有遗忘时滞的静态神经网络的H∞状态估计问题.首先降低了时变时滞可微的条件,然后通过构造合适的Lyapunov-Krasovskii泛函,设计保H∞性能的状态估计器,使得误差系统实现全局渐近稳定.最后,借助Matlab中线性矩阵不等式工具箱进行数值仿真,验证了结论的有效性.
This paper focuses on the study of H∞ state estimation of static neural networks having leakage delay.With the skills to construct Lyapunov-Krasovskii functionals,a state estimator is designed for the estimation of H∞ performance,and the results are derived without applying differentiability on time-varying delays.Finally,a numerical example is provided to demonstrate the effectiveness and advantages of the obtained results.
作者
吴淑晨
李晓迪
WU Shuchen;LI Xiaodi(School of Mathematics and Statistics,Shandong Normal University,Ji nan 250014;Center for Control and Engineering Computation,Shandong Normal University,Ji nan 250014)
出处
《南京信息工程大学学报(自然科学版)》
CAS
2019年第4期440-445,共6页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(61673247)
山东省自然科学杰出青年基金(JQ201719)