摘要
针对传统丝材等离子弧增材制造碳钢效率低、质量高的特点,提出了一种“双填丝+压缩等离子弧”增材制造工艺,并采用该工艺增材制造了试样,对比分析了双填丝与单填丝增材制造试样的成形尺寸、显微组织特征和力学性能.结果表明,相对于单填丝等离子弧增材制造工艺,采用新型双填丝等离子弧增材制造工艺,在相同的工艺条件下,熔敷效率提高了0.97倍;平均晶粒尺寸由18.75μm细化到13.47μm;试样纵向拉伸抗拉强度提高了62.64MPa,横向拉伸抗拉强度提高了67.52MPa;试样有效层的平均显微维氏硬度由158.95HV0.5增加到175.34HV0.5.
Aiming at the low efficiency and high quality of deposited carbon steel component by using conditional single-wire feed and plasma arc additive manufacturing process,a novel process named double-wire feed and plasma arc additive manufacturing process is proposed.Low carbon steel components were successfully manufactured by this process,then the characterization of deposition size,microstructure and mechanical properties of all samples deposited by two processes were compared.The results show that,under the same process conditions,compared with the single-wire feed and plasma arc additive manufacturing process,the deposition rate of the double-wire feed and plasma arc additive manufacturing process improved by 0.97 times.The average grain size of the samples deposited by double-wire feed and plasma arc additive manufacturing process is fined from 18.75 μm to 13.75 μm on an average.The ultimate tensile strength in vertical direction of the deposited samples is increased by 62.64 MPa,and that in horizontal direction is increased by 67.52 MPa.Moreover,the mean Micro Vickers Hardness of the effective deposited layer raised from 158.95 HV to 175.34 HV.
作者
占彬
冯曰海
何杰
刘思余
ZHAN Bin;FENG Yuehai;HE Jie;LIU Siyu(Nanjing University of Science and Technology,Nanjing 210094,China)
出处
《焊接学报》
EI
CAS
CSCD
北大核心
2019年第6期77-81,I0004,共6页
Transactions of The China Welding Institution
基金
总装备部研究项目(7131532)
国防创新特区项目(17-H863)
关键词
双填丝
等离子电弧
低碳钢
增材制造
double-wire feed
plasma arc
low carbon steel
additive manufacturing